{"title":"Constraints on real scalar inflation from preheating using LATTICEEASY*","authors":"Wei Cheng, 伟 程, Tong Qin, 通 秦, Jiujiang Jiang, 玖江 姜, Ruiyu Zhou and 瑞雨 周","doi":"10.1088/1674-1137/ad34bd","DOIUrl":null,"url":null,"abstract":"In this paper, we undertake a detailed study of real scalar inflation using LATTICEEASY simulations to investigate preheating phenomena. Generally, the scalar inflation potential with non-minimal coupling can be approximated using a quartic potential. We observe that the evolutionary behavior of this potential remains unaffected by the coupling coefficient. Furthermore, the theoretical predictions for the scalar spectral index ( ) and tensor-to-scalar power ratio (r) are independent of this coefficient. Consequently, the coefficients of this model are not constrained by Planck observations. Fortunately, the properties of preheating after inflation provide a viable approach to examining these coefficients. Through LATTICEEASY simulations, we trace the evolution of particle number density, scale factor, and energy density during the preheating process. Subsequently, we derive the parameters, such as the energy ratio (γ) and the e-folding number of preheating ( ), which facilitate further predictions of and r. We successfully validate real scalar inflation model using preheating in LATTICEEASY simulations based on the analytical relationship between preheating and inflation models.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"38 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad34bd","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we undertake a detailed study of real scalar inflation using LATTICEEASY simulations to investigate preheating phenomena. Generally, the scalar inflation potential with non-minimal coupling can be approximated using a quartic potential. We observe that the evolutionary behavior of this potential remains unaffected by the coupling coefficient. Furthermore, the theoretical predictions for the scalar spectral index ( ) and tensor-to-scalar power ratio (r) are independent of this coefficient. Consequently, the coefficients of this model are not constrained by Planck observations. Fortunately, the properties of preheating after inflation provide a viable approach to examining these coefficients. Through LATTICEEASY simulations, we trace the evolution of particle number density, scale factor, and energy density during the preheating process. Subsequently, we derive the parameters, such as the energy ratio (γ) and the e-folding number of preheating ( ), which facilitate further predictions of and r. We successfully validate real scalar inflation model using preheating in LATTICEEASY simulations based on the analytical relationship between preheating and inflation models.
期刊介绍:
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of:
Particle physics;
Nuclear physics;
Particle and nuclear astrophysics;
Cosmology;
Accelerator physics.
The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication.
The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal.
The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.