Thermodynamic Properties of the Glass-Forming Ternary (Fe, Co, Ni, Cu)–Ti–Zr Liquid Alloys I. Mixing Enthalpies of Liquid Alloys

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
M. A. Turchanin, P. G. Agraval, G. O. Vodopyanova, V. A. Korsun
{"title":"Thermodynamic Properties of the Glass-Forming Ternary (Fe, Co, Ni, Cu)–Ti–Zr Liquid Alloys I. Mixing Enthalpies of Liquid Alloys","authors":"M. A. Turchanin,&nbsp;P. G. Agraval,&nbsp;G. O. Vodopyanova,&nbsp;V. A. Korsun","doi":"10.1007/s11106-024-00422-8","DOIUrl":null,"url":null,"abstract":"<p>Data on the mixing enthalpies of liquid alloys in ternary Me–Ti–Zr (Me = Fe, Co, Ni, Cu) systems and boundary binary systems are summarized. The partial mixing enthalpies of titanium and zirconium and the integral mixing enthalpy of liquid Co–Ti–Zr alloys were investigated for the first time by high-temperature calorimetry at 1873 K along the <i>x</i><sub>Co</sub>/<i>x</i><sub>Ti</sub> =3 section at <i>x</i><sub>Zr</sub> = 0–0.57 and <i>x</i><sub>Co</sub>/<i>x</i><sub>Zr</sub> = 3 section at <i>x</i><sub>Ti</sub> = 0–0.54. It was shown that the investigated partial and integral functions were characterized by significant negative values. The isotherms of the integral mixing enthalpy of liquid Fe–Ti–Zr alloys at 2173 K and liquid Co–Ti–Zr alloys at 1873 K are described using the Redlich–Kister–Muggianu polynomial. A new description for the liquid Cu–Ti–Zr alloys at 1873 K is also presented. The negative values and composition dependence of the ∆<sub>m</sub><i>H</i> function for liquid alloys of each ternary system are determined by the predominant influence of MeTi and MeZr pair interactions, in which iron, cobalt, nickel, and copper are electron acceptors, while titanium and zirconium are donors. In the considered series of the binary Me–Ti and Me–Zr systems and ternary Me–Ti–Zr systems, the absolute values of the integral mixing enthalpy of liquid alloys increase in the transition from the iron systems to the nickel systems and are minimal in the systems with copper.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 9-10","pages":"621 - 631"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-024-00422-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Data on the mixing enthalpies of liquid alloys in ternary Me–Ti–Zr (Me = Fe, Co, Ni, Cu) systems and boundary binary systems are summarized. The partial mixing enthalpies of titanium and zirconium and the integral mixing enthalpy of liquid Co–Ti–Zr alloys were investigated for the first time by high-temperature calorimetry at 1873 K along the xCo/xTi =3 section at xZr = 0–0.57 and xCo/xZr = 3 section at xTi = 0–0.54. It was shown that the investigated partial and integral functions were characterized by significant negative values. The isotherms of the integral mixing enthalpy of liquid Fe–Ti–Zr alloys at 2173 K and liquid Co–Ti–Zr alloys at 1873 K are described using the Redlich–Kister–Muggianu polynomial. A new description for the liquid Cu–Ti–Zr alloys at 1873 K is also presented. The negative values and composition dependence of the ∆mH function for liquid alloys of each ternary system are determined by the predominant influence of MeTi and MeZr pair interactions, in which iron, cobalt, nickel, and copper are electron acceptors, while titanium and zirconium are donors. In the considered series of the binary Me–Ti and Me–Zr systems and ternary Me–Ti–Zr systems, the absolute values of the integral mixing enthalpy of liquid alloys increase in the transition from the iron systems to the nickel systems and are minimal in the systems with copper.

Abstract Image

Abstract Image

玻璃态三元(铁、钴、镍、铜)-钛-锆液态合金的热力学性质 I.液态合金的混合焓
总结了三元 Me-Ti-Zr(Me = Fe、Co、Ni、Cu)体系和边界二元体系中液态合金的混合焓数据。通过高温量热法,首次在 1873 K 温度下沿 xZr = 0-0.57 时的 xCo/xTi = 3 断面和 xTi = 0-0.54 时的 xCo/xZr = 3 断面研究了钛和锆的部分混合焓以及液态 Co-Ti-Zr 合金的整体混合焓。结果表明,所研究的部分函数和积分函数都具有显著负值的特征。利用 Redlich-Kister-Muggianu 多项式描述了 2173 K 时液态 Fe-Ti-Zr 合金和 1873 K 时液态 Co-Ti-Zr 合金的积分混合焓等温线。此外,还对 1873 K 下的液态铜-钛-锌合金进行了新的描述。每个三元体系的液态合金的 ∆mH 函数的负值和成分依赖性是由 MeTi 和 MeZr 对相互作用的主要影响决定的,其中铁、钴、镍和铜是电子受体,而钛和锆是供体。在所考虑的二元 Me-Ti 和 Me-Zr 体系以及三元 Me-Ti-Zr 体系系列中,液态合金的积分混合焓的绝对值在从铁体系过渡到镍体系时会增加,而在含铜体系中则最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信