Influence of magnesium and calcium sulfate whisker on crystallization characteristics of poly (butylene adipate-co-terephthalate) and Poly(butylene succinate)
{"title":"Influence of magnesium and calcium sulfate whisker on crystallization characteristics of poly (butylene adipate-co-terephthalate) and Poly(butylene succinate)","authors":"Hsu-I Mao, Shu-Hui Liu, Jui-Ching Chu, Jia-Wei Shiu, Pei-Yin Chen, Chin-Wen Chen","doi":"10.1177/07316844241255166","DOIUrl":null,"url":null,"abstract":"Inorganic fillers of whisker-like morphology are considered promising materials, and they have gained significant attention in recent years as a substitute for glass fibers due to their fibrous surface characteristics and extremely low bulk density. This study selected magnesium sulfate whiskers (MSWs) containing crystal water and pure calcium sulfate whiskers (CSWs) as fillers. They were physically blended with biodegradable polymers PBAT and PBS in a range of 0.1 wt.% to 2 wt.% to form composite materials. The non-isothermal crystallization behavior of the composite materials was studied using differential scanning calorimetry (DSC). The data indicated that with an increase in whisker content, the crystallization temperature (T<jats:sub>c</jats:sub>) of composites increased, and the addition of a small amount of whiskers led to a reduction in the half-crystallization time of the composite materials, indicating the crystallization capacity of the materials has been enhanced to varying degrees. Analysis via POM unveiled a consistent pattern of decreased spherulite size and heightened spherulite count with the introduction of whiskers. This phenomenon is ascribed to the whisker fillers’ function as nucleating agents within the polymer matrices, thereby stimulating the crystallization process. Interestingly, the findings suggest that CSWs exert a more significant influence on crystallization than MSWs, likely due to the distinct single fiber morphology of the former filler.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"24 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241255166","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Inorganic fillers of whisker-like morphology are considered promising materials, and they have gained significant attention in recent years as a substitute for glass fibers due to their fibrous surface characteristics and extremely low bulk density. This study selected magnesium sulfate whiskers (MSWs) containing crystal water and pure calcium sulfate whiskers (CSWs) as fillers. They were physically blended with biodegradable polymers PBAT and PBS in a range of 0.1 wt.% to 2 wt.% to form composite materials. The non-isothermal crystallization behavior of the composite materials was studied using differential scanning calorimetry (DSC). The data indicated that with an increase in whisker content, the crystallization temperature (Tc) of composites increased, and the addition of a small amount of whiskers led to a reduction in the half-crystallization time of the composite materials, indicating the crystallization capacity of the materials has been enhanced to varying degrees. Analysis via POM unveiled a consistent pattern of decreased spherulite size and heightened spherulite count with the introduction of whiskers. This phenomenon is ascribed to the whisker fillers’ function as nucleating agents within the polymer matrices, thereby stimulating the crystallization process. Interestingly, the findings suggest that CSWs exert a more significant influence on crystallization than MSWs, likely due to the distinct single fiber morphology of the former filler.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).