{"title":"Auto-Bäcklund Transformation and Exact Solutions for a New Integrable (3+1)-dimensional KdV-CBS Equation","authors":"Xinyue Guo, Lianzhong Li","doi":"10.1007/s12346-024-01062-4","DOIUrl":null,"url":null,"abstract":"<p>The Korteweg-de Vries–Calogero–Bogoyavlenskii–Schiff (KdV-CBS) equation is often used in dealing with long-wave propagation interactions, and is widely used in mathematics, physics, and engineering. This paper proposes a new extended (3+1)-dimensional KdV-CBS equation, and it’s never been studied. Additionally, we verify the integrability of the equation based on the Painlevé test. By employing Hirota’s method, a bilinear auto-Bäcklund transformation, the multiple-soliton solutions, and the soliton molecules of the equation are derived. New exact solutions of the equation are constructed utilizing the power series expansion method and <span>\\((G'/G)\\)</span>-expansion method. These exact solutions are also presented graphically. Finally, the conservation laws of the equation are obtained. Our results are helpful for understanding nonlinear wave phenomena.\n</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"56 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01062-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Korteweg-de Vries–Calogero–Bogoyavlenskii–Schiff (KdV-CBS) equation is often used in dealing with long-wave propagation interactions, and is widely used in mathematics, physics, and engineering. This paper proposes a new extended (3+1)-dimensional KdV-CBS equation, and it’s never been studied. Additionally, we verify the integrability of the equation based on the Painlevé test. By employing Hirota’s method, a bilinear auto-Bäcklund transformation, the multiple-soliton solutions, and the soliton molecules of the equation are derived. New exact solutions of the equation are constructed utilizing the power series expansion method and \((G'/G)\)-expansion method. These exact solutions are also presented graphically. Finally, the conservation laws of the equation are obtained. Our results are helpful for understanding nonlinear wave phenomena.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.