{"title":"Impact of CO2 influx on sandstone reservoir quality: A case study of the Quantou Formation, southern Songliao Basin, China","authors":"Zheng Cao, Chengyan Lin, Chunmei Dong, Lihua Ren, Keyu Liu, Karem Azmy, Hairuo Qing, Jason Cosford","doi":"10.1306/03052418150","DOIUrl":null,"url":null,"abstract":"The CO2-gas reservoirs have been recorded in many petroliferous basins worldwide. However, the impact of deep inorganic CO2 influx on reservoir quality has received little attention. Here, a new set of mineralogical and geochemical data collected from the Lower Cretaceous Quantou Formation sandstones in the southern Songliao Basin are presented to address this issue. The sandstones were broadly subdivided into two zones based on their mineralogical compositions: (1) a normal zone with higher porosity (average 13.7%) and permeability (average 3.27 md) that is located >10 km from the Gudian fault (composed of ferrocalcite, ankerite, quartz, mixed-layer illite/smectite (I/S), kaolinite, illite, and chlorite); and (2) a dawsonite-bearing zone with relatively poor reservoir quality (average 10.1% and 0.4 md) adjacent to the Gudian fault (consisting of dawsonite, ankerite, quartz, I/S, and illite). The carbon sources for dawsonite and ankerite in the dawsonite-bearing zone (δ13C = −5.7‰ to −0.8‰ and δ18O = −20.6‰ to −17.1‰, and Sr = 0.710216–0.712472) are mostly a mix of mantle magmatic CO2 and crustal CO2, with a small amount of organic CO2, which is the opposite of that for the ferrocalcite and ankerite in the normal zone (δ13C = −10.5‰ to −2.3‰, δ18O = −19.3‰ to −14.9‰, and Sr = 0.712060–0.714030). Observations of the dawsonite-bearing zone demonstrate higher contents of carbonate and quartz cements, specific clay mineral types (mixed-layer I/S with Reichweite order of R = 3 and illite), and poor reservoir quality and oil productivity due to the influx of deep inorganic CO2 dating to circa 65–44 Ma.","PeriodicalId":7124,"journal":{"name":"AAPG Bulletin","volume":"54 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPG Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1306/03052418150","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The CO2-gas reservoirs have been recorded in many petroliferous basins worldwide. However, the impact of deep inorganic CO2 influx on reservoir quality has received little attention. Here, a new set of mineralogical and geochemical data collected from the Lower Cretaceous Quantou Formation sandstones in the southern Songliao Basin are presented to address this issue. The sandstones were broadly subdivided into two zones based on their mineralogical compositions: (1) a normal zone with higher porosity (average 13.7%) and permeability (average 3.27 md) that is located >10 km from the Gudian fault (composed of ferrocalcite, ankerite, quartz, mixed-layer illite/smectite (I/S), kaolinite, illite, and chlorite); and (2) a dawsonite-bearing zone with relatively poor reservoir quality (average 10.1% and 0.4 md) adjacent to the Gudian fault (consisting of dawsonite, ankerite, quartz, I/S, and illite). The carbon sources for dawsonite and ankerite in the dawsonite-bearing zone (δ13C = −5.7‰ to −0.8‰ and δ18O = −20.6‰ to −17.1‰, and Sr = 0.710216–0.712472) are mostly a mix of mantle magmatic CO2 and crustal CO2, with a small amount of organic CO2, which is the opposite of that for the ferrocalcite and ankerite in the normal zone (δ13C = −10.5‰ to −2.3‰, δ18O = −19.3‰ to −14.9‰, and Sr = 0.712060–0.714030). Observations of the dawsonite-bearing zone demonstrate higher contents of carbonate and quartz cements, specific clay mineral types (mixed-layer I/S with Reichweite order of R = 3 and illite), and poor reservoir quality and oil productivity due to the influx of deep inorganic CO2 dating to circa 65–44 Ma.
期刊介绍:
While the 21st-century AAPG Bulletin has undergone some changes since 1917, enlarging to 8 ½ x 11” size to incorporate more material and being published digitally as well as in print, it continues to adhere to the primary purpose of the organization, which is to advance the science of geology especially as it relates to petroleum, natural gas, other subsurface fluids, and mineral resources.
Delivered digitally or in print monthly to each AAPG Member as a part of membership dues, the AAPG Bulletin is one of the most respected, peer-reviewed technical journals in existence, with recent issues containing papers focused on such topics as the Middle East, channel detection, China, permeability, subseismic fault prediction, the U.S., and Africa.