Norm convergence of subsequences of matrix transform means of Walsh–Fourier series

Pub Date : 2024-06-01 DOI:10.1007/s10998-024-00584-3
István Blahota
{"title":"Norm convergence of subsequences of matrix transform means of Walsh–Fourier series","authors":"István Blahota","doi":"10.1007/s10998-024-00584-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\{a_{n}:\\ n\\in \\mathbb {P}\\}\\)</span> be an increasing sequence of positive integers. For every <span>\\(n\\in \\mathbb {P}\\)</span> let <span>\\(\\{t_{k,a_{n}}: 1\\le k\\le a_{n},\\ k\\in \\mathbb {P}\\}\\)</span> be a finite sequence of non-negative numbers such that </p><span>$$\\begin{aligned} \\sum _{k=1}^{a_{n}} t_{k,a_{n}}=1 \\end{aligned}$$</span><p>holds and </p><span>$$\\begin{aligned} \\lim _{n\\rightarrow \\infty }t_{k,a_{n}}=0 \\end{aligned}$$</span><p>is satisfied for any fixed <i>k</i>. Our main result (Theorem 6.5) is that we prove <span>\\(L_{1}\\)</span>-norm convergence </p><span>$$\\begin{aligned} \\sigma _{a_{n}}^{T}(f)\\rightarrow f \\end{aligned}$$</span><p>(for example, but not limited to <span>\\(a_{n}:=2^{n}\\)</span>, see Corollary 6.6 and Sect. 7) with weaker conditions than it was known before for matrix transform means and for some special means, namely Nörlund and weighted ones.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00584-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\{a_{n}:\ n\in \mathbb {P}\}\) be an increasing sequence of positive integers. For every \(n\in \mathbb {P}\) let \(\{t_{k,a_{n}}: 1\le k\le a_{n},\ k\in \mathbb {P}\}\) be a finite sequence of non-negative numbers such that

$$\begin{aligned} \sum _{k=1}^{a_{n}} t_{k,a_{n}}=1 \end{aligned}$$

holds and

$$\begin{aligned} \lim _{n\rightarrow \infty }t_{k,a_{n}}=0 \end{aligned}$$

is satisfied for any fixed k. Our main result (Theorem 6.5) is that we prove \(L_{1}\)-norm convergence

$$\begin{aligned} \sigma _{a_{n}}^{T}(f)\rightarrow f \end{aligned}$$

(for example, but not limited to \(a_{n}:=2^{n}\), see Corollary 6.6 and Sect. 7) with weaker conditions than it was known before for matrix transform means and for some special means, namely Nörlund and weighted ones.

分享
查看原文
沃尔什-傅里叶级数的矩阵变换手段子序列的规范收敛性
让 \(\{a_{n}:\ n\in \mathbb {P}\}) 是一个正整数递增序列。对于每一个(n\in \mathbb {P}),让({t_{k,a_{n}}: 1\le k\le a_{n},\ k\in \mathbb {P})是一个非负数的有限序列,使得$$(begin{aligned})。\sum_{k=1}^{a_{n}}t_{k,a_{n}}=1(end{aligned})$$holds 和 $$\begin{aligned}\我們的主要結果(定理 6.5)是我們證明 (L_{1}\)-規範收斂 $$begin{aligned}。\例如,但不限于 (a_{n}:=2^{n}\),见推论 6.6 和第 7 节),其条件比之前已知的矩阵变换手段和一些特殊手段(即诺尔隆德手段和加权手段)要弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信