A molecular reconstruction theorem for $$H^{p(\cdot )}_{\omega }(\mathbb {R}^{n})$$

Pub Date : 2024-05-30 DOI:10.1007/s10998-024-00575-4
Pablo Rocha
{"title":"A molecular reconstruction theorem for $$H^{p(\\cdot )}_{\\omega }(\\mathbb {R}^{n})$$","authors":"Pablo Rocha","doi":"10.1007/s10998-024-00575-4","DOIUrl":null,"url":null,"abstract":"<p>In this article we give a molecular reconstruction theorem for <span>\\(H_{\\omega }^{p(\\cdot )}(\\mathbb {R}^{n})\\)</span>. As an application of this result and the atomic decomposition developed in Ho (Tohoku Math J 69 (3), 383–413, 2017) we show that classical singular integrals can be extended to bounded operators on <span>\\(H_{\\omega }^{p(\\cdot )}(\\mathbb {R}^{n})\\)</span>. We also prove, for certain exponents <span>\\(q(\\cdot )\\)</span> and certain weights <span>\\(\\omega \\)</span>, that the Riesz potential <span>\\(I_{\\alpha }\\)</span>, with <span>\\(0&lt; \\alpha &lt; n\\)</span>, can be extended to a bounded operator from <span>\\(H^{p(\\cdot )}_{\\omega }(\\mathbb {R}^{n})\\)</span> into <span>\\(H^{q(\\cdot )}_{\\omega }(\\mathbb {R}^{n})\\)</span>, for <span>\\(\\frac{1}{p(\\cdot )}:= \\frac{1}{q(\\cdot )} + \\frac{\\alpha }{n}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00575-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we give a molecular reconstruction theorem for \(H_{\omega }^{p(\cdot )}(\mathbb {R}^{n})\). As an application of this result and the atomic decomposition developed in Ho (Tohoku Math J 69 (3), 383–413, 2017) we show that classical singular integrals can be extended to bounded operators on \(H_{\omega }^{p(\cdot )}(\mathbb {R}^{n})\). We also prove, for certain exponents \(q(\cdot )\) and certain weights \(\omega \), that the Riesz potential \(I_{\alpha }\), with \(0< \alpha < n\), can be extended to a bounded operator from \(H^{p(\cdot )}_{\omega }(\mathbb {R}^{n})\) into \(H^{q(\cdot )}_{\omega }(\mathbb {R}^{n})\), for \(\frac{1}{p(\cdot )}:= \frac{1}{q(\cdot )} + \frac{\alpha }{n}\).

分享
查看原文
$$H^{p(\cdot )}_{\omega }(\mathbb {R}^{n})$$ 的分子重构定理
本文给出了 \(H_{\omega }^{p(\cdot )}(\mathbb {R}^{n})\) 的分子重构定理。作为这一结果以及在 Ho (Tohoku Math J 69 (3), 383-413, 2017) 中发展的原子分解的应用,我们证明经典奇异积分可以扩展到 \(H_{\omega }^{p(\cdot )}(\mathbb {R}^{n})\ 上的有界算子。)我们还证明,对于某些指数(q(\cdot ))和某些权重(\omega }),里兹势(I_{\alpha }),随着(0< \alpha <;n\), can be extended to a bounded operator from \(H^{p(\cdot )}_{\omega }(\mathbb {R}^{n})\) into \(H^{q(\cdot )}_{\omega }(\mathbb {R}^{n})\), for\(\frac{1}{p(\cdot )}:= \frac{1}{q(\cdot )} + \frac{α }{n}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信