An Inverse Problem for a Hyperbolic Integro-Differential Equation in a Bounded Domain

J. Sh. Safarov, D. K. Durdiev, A. A. Rakhmonov
{"title":"An Inverse Problem for a Hyperbolic Integro-Differential Equation in a Bounded Domain","authors":"J. Sh. Safarov, D. K. Durdiev, A. A. Rakhmonov","doi":"10.1134/s1055134424020068","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the inverse problem of finding the kernel of the integral term in an\nintegro-differential equation. The problem of finding the memory kernel in the wave process is\nreduced to a nonlinear Volterra integral equation of the first kind of convolution type, which is in\nturn reduced under some assumptions to a Volterra integral equation of the second kind. Using\nthe method of contraction mappings, we prove the unique solvability of the problem in the space\nof continuous functions with weighted norms and obtain an estimate of the conditional stability of\nthe solution.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1055134424020068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the inverse problem of finding the kernel of the integral term in an integro-differential equation. The problem of finding the memory kernel in the wave process is reduced to a nonlinear Volterra integral equation of the first kind of convolution type, which is in turn reduced under some assumptions to a Volterra integral equation of the second kind. Using the method of contraction mappings, we prove the unique solvability of the problem in the space of continuous functions with weighted norms and obtain an estimate of the conditional stability of the solution.

有界域中双曲积分微分方程的逆问题
摘要 我们考虑了求积分微分方程中积分项内核的逆问题。在波过程中寻找记忆核的问题被简化为第一种卷积类型的非线性伏特拉积分方程,在某些假设条件下又被简化为第二种伏特拉积分方程。利用收缩映射方法,我们证明了问题在带加权规范的连续函数空间中的唯一可解性,并得到了解的条件稳定性估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信