A non-compact convex hull in generalized non-positive curvature

IF 1.3 2区 数学 Q1 MATHEMATICS
Giuliano Basso, Yannick Krifka, Elefterios Soultanis
{"title":"A non-compact convex hull in generalized non-positive curvature","authors":"Giuliano Basso, Yannick Krifka, Elefterios Soultanis","doi":"10.1007/s00208-024-02905-w","DOIUrl":null,"url":null,"abstract":"<p>Gromov’s (open) question whether the closed convex hull of finitely many points in a complete <span>\\({{\\,\\textrm{CAT}\\,}}(0)\\)</span> space is compact naturally extends to weaker notions of non-positive curvature in metric spaces. In this article, we consider metric spaces admitting a conical geodesic bicombing, and show that the question has a negative answer in this setting. Specifically, for each <span>\\(n&gt;1\\)</span>, we construct a complete metric space <i>X</i> admitting a conical geodesic bicombing, which is the closed convex hull of <i>n</i> points and is not compact. The space <i>X</i> moreover has the universal property that for any <i>n</i> points <span>\\(A=\\{x_1,\\ldots ,x_n\\}\\subset Y\\)</span> in a complete <span>\\({{\\,\\textrm{CAT}\\,}}(0)\\)</span> space <i>Y</i> there exists a Lipschitz map <span>\\(f:X\\rightarrow Y\\)</span> such that the convex hull of <span>\\(A\\)</span> is contained in <i>f</i>(<i>X</i>).</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"87 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02905-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Gromov’s (open) question whether the closed convex hull of finitely many points in a complete \({{\,\textrm{CAT}\,}}(0)\) space is compact naturally extends to weaker notions of non-positive curvature in metric spaces. In this article, we consider metric spaces admitting a conical geodesic bicombing, and show that the question has a negative answer in this setting. Specifically, for each \(n>1\), we construct a complete metric space X admitting a conical geodesic bicombing, which is the closed convex hull of n points and is not compact. The space X moreover has the universal property that for any n points \(A=\{x_1,\ldots ,x_n\}\subset Y\) in a complete \({{\,\textrm{CAT}\,}}(0)\) space Y there exists a Lipschitz map \(f:X\rightarrow Y\) such that the convex hull of \(A\) is contained in f(X).

Abstract Image

广义非正曲率的非紧凑凸壳
格罗莫夫提出了一个(开放的)问题:在一个完整的({\,\textrm{CAT}\,}(0)\)空间中,有限多个点的闭凸壳是否紧凑,这个问题自然延伸到了公元空间中较弱的非正曲率概念。在本文中,我们考虑了容许圆锥测地双梳理的度量空间,并证明了在这种情况下问题的答案是否定的。具体地说,对于每个 \(n>1\),我们构造了一个容许圆锥形大地双角的完整度量空间 X,它是 n 个点的闭凸壳,并且不紧凑。空间 X 还具有这样一个普遍性质:对于完整的 \({{\,\textrm{CAT}\,}}(0)\) 空间 Y 中的任意 n 个点 \(A=\{x_1,\ldots ,x_n}\subset Y\) 都存在一个 Lipschitz 映射 \(f:X\rightarrow Y\) ,使得 \(A\) 的凸壳包含在 f(X) 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信