A note on Fourier coefficients of Hecke eigenforms in short intervals

Sanoli Gun, Sunil Naik
{"title":"A note on Fourier coefficients of Hecke eigenforms in short intervals","authors":"Sanoli Gun, Sunil Naik","doi":"10.1007/s00605-024-01984-w","DOIUrl":null,"url":null,"abstract":"<p>In this article, we investigate large prime factors of Fourier coefficients of non-CM normalized cuspidal Hecke eigenforms in short intervals. One of the new ingredients involves deriving an explicit version of Chebotarev density theorem in an interval of length <span>\\(\\frac{x}{(\\log x)^A}\\)</span> for any <span>\\(A&gt;0\\)</span>, modifying an earlier work of Balog and Ono. Furthermore, we need to strengthen a work of Rouse-Thorner to derive a lower bound for the largest prime factor of Fourier coefficients in an interval of length <span>\\(x^{1/2 + \\epsilon }\\)</span> for any <span>\\(\\epsilon &gt;0\\)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01984-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate large prime factors of Fourier coefficients of non-CM normalized cuspidal Hecke eigenforms in short intervals. One of the new ingredients involves deriving an explicit version of Chebotarev density theorem in an interval of length \(\frac{x}{(\log x)^A}\) for any \(A>0\), modifying an earlier work of Balog and Ono. Furthermore, we need to strengthen a work of Rouse-Thorner to derive a lower bound for the largest prime factor of Fourier coefficients in an interval of length \(x^{1/2 + \epsilon }\) for any \(\epsilon >0\).

关于短区间赫克特征形式傅里叶系数的说明
在这篇文章中,我们研究了短区间内非 CM 归一化 cuspidal Hecke 特征形式的傅里叶系数的大质因数。新内容之一涉及在任意 \(A>0\) 的长度区间内推导出切波特列夫密度定理的显式版本(\frac{x}{(\log x)^A}\ ),修改了巴洛格和小野的早期工作。此外,我们还需要加强 Rouse-Thorner 的一项工作,为任意 \(\epsilon >0\) 的长度为 \(x^{1/2 + \epsilon }\) 的区间中傅里叶系数的最大质因子推导出一个下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信