Intelligent Fisheries: Cognitive Solutions for Improving Aquaculture Commercial Efficiency Through Enhanced Biomass Estimation and Early Disease Detection
IF 4.3 3区 计算机科学Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kanwal Aftab, Linda Tschirren, Boris Pasini, Peter Zeller, Bostan Khan, Muhammad Moazam Fraz
{"title":"Intelligent Fisheries: Cognitive Solutions for Improving Aquaculture Commercial Efficiency Through Enhanced Biomass Estimation and Early Disease Detection","authors":"Kanwal Aftab, Linda Tschirren, Boris Pasini, Peter Zeller, Bostan Khan, Muhammad Moazam Fraz","doi":"10.1007/s12559-024-10292-2","DOIUrl":null,"url":null,"abstract":"<p>With the burgeoning global demand for seafood, potential solutions like aquaculture are increasingly significant, provided they address issues like pollution and food security challenges in a sustainable manner. However, significant obstacles such as disease outbreaks and inaccurate biomass estimation underscore the need for optimized solutions. This paper proposes “Fish-Sense”, a deep learning-based pipeline inspired by the human visual system’s ability to recognize and classify objects, developed in conjunction with fish farms, aiming to enhance disease detection and biomass estimation in the aquaculture industry. Our automated framework is two-pronged: one module for biomass estimation using deep learning algorithms to segment fish, classify species, and estimate biomass; and another for disease symptom detection symptoms, employing deep learning algorithms to classify fish into healthy and unhealthy categories, and subsequently identifying symptoms and locations of bacterial infections if a fish is classified as unhealthy. To overcome data scarcity in this field, we have created four novel real-world datasets for fish segmentation, health classification, species classification, and fish part segmentation. Our biomass estimation algorithms demonstrated substantial accuracy across five species, and the health classification. These algorithms provide a foundation for the development of industrial software solutions to improve fish health monitoring in aquaculture farms. Our integrated pipeline facilitates the transition from research to real-world applications, potentially encouraging responsible aquaculture practices. Nevertheless, these advancements must be seen as part of a comprehensive strategy aimed at improving the aquaculture industry’s sustainability and efficiency, in line with the United Nations’ Sustainable Development Goals’ evolving interpretations. The code, trained models, and the data for this project can be obtained from the following GitHub repository: https://github.com/Vision-At-SEECS/Fish-Sense.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10292-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the burgeoning global demand for seafood, potential solutions like aquaculture are increasingly significant, provided they address issues like pollution and food security challenges in a sustainable manner. However, significant obstacles such as disease outbreaks and inaccurate biomass estimation underscore the need for optimized solutions. This paper proposes “Fish-Sense”, a deep learning-based pipeline inspired by the human visual system’s ability to recognize and classify objects, developed in conjunction with fish farms, aiming to enhance disease detection and biomass estimation in the aquaculture industry. Our automated framework is two-pronged: one module for biomass estimation using deep learning algorithms to segment fish, classify species, and estimate biomass; and another for disease symptom detection symptoms, employing deep learning algorithms to classify fish into healthy and unhealthy categories, and subsequently identifying symptoms and locations of bacterial infections if a fish is classified as unhealthy. To overcome data scarcity in this field, we have created four novel real-world datasets for fish segmentation, health classification, species classification, and fish part segmentation. Our biomass estimation algorithms demonstrated substantial accuracy across five species, and the health classification. These algorithms provide a foundation for the development of industrial software solutions to improve fish health monitoring in aquaculture farms. Our integrated pipeline facilitates the transition from research to real-world applications, potentially encouraging responsible aquaculture practices. Nevertheless, these advancements must be seen as part of a comprehensive strategy aimed at improving the aquaculture industry’s sustainability and efficiency, in line with the United Nations’ Sustainable Development Goals’ evolving interpretations. The code, trained models, and the data for this project can be obtained from the following GitHub repository: https://github.com/Vision-At-SEECS/Fish-Sense.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.