Deep Bayesian Filter for Bayes-faithful Data Assimilation

Yuta Tarumi, Keisuke Fukuda, Shin-ichi Maeda
{"title":"Deep Bayesian Filter for Bayes-faithful Data Assimilation","authors":"Yuta Tarumi, Keisuke Fukuda, Shin-ichi Maeda","doi":"arxiv-2405.18674","DOIUrl":null,"url":null,"abstract":"State estimation for nonlinear state space models is a challenging task.\nExisting assimilation methodologies predominantly assume Gaussian posteriors on\nphysical space, where true posteriors become inevitably non-Gaussian. We\npropose Deep Bayesian Filtering (DBF) for data assimilation on nonlinear state\nspace models (SSMs). DBF constructs new latent variables $h_t$ on a new latent\n(``fancy'') space and assimilates observations $o_t$. By (i) constraining the\nstate transition on fancy space to be linear and (ii) learning a Gaussian\ninverse observation operator $q(h_t|o_t)$, posteriors always remain Gaussian\nfor DBF. Quite distinctively, the structured design of posteriors provides an\nanalytic formula for the recursive computation of posteriors without\naccumulating Monte-Carlo sampling errors over time steps. DBF seeks the\nGaussian inverse observation operators $q(h_t|o_t)$ and other latent SSM\nparameters (e.g., dynamics matrix) by maximizing the evidence lower bound.\nExperiments show that DBF outperforms model-based approaches and latent\nassimilation methods in various tasks and conditions.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State estimation for nonlinear state space models is a challenging task. Existing assimilation methodologies predominantly assume Gaussian posteriors on physical space, where true posteriors become inevitably non-Gaussian. We propose Deep Bayesian Filtering (DBF) for data assimilation on nonlinear state space models (SSMs). DBF constructs new latent variables $h_t$ on a new latent (``fancy'') space and assimilates observations $o_t$. By (i) constraining the state transition on fancy space to be linear and (ii) learning a Gaussian inverse observation operator $q(h_t|o_t)$, posteriors always remain Gaussian for DBF. Quite distinctively, the structured design of posteriors provides an analytic formula for the recursive computation of posteriors without accumulating Monte-Carlo sampling errors over time steps. DBF seeks the Gaussian inverse observation operators $q(h_t|o_t)$ and other latent SSM parameters (e.g., dynamics matrix) by maximizing the evidence lower bound. Experiments show that DBF outperforms model-based approaches and latent assimilation methods in various tasks and conditions.
贝叶斯忠实数据同化的深度贝叶斯过滤器
非线性状态空间模型的状态估计是一项具有挑战性的任务。现有的同化方法主要假定物理空间的后验为高斯,而真实的后验必然是非高斯的。我们提出了用于非线性状态空间模型(SSM)数据同化的深度贝叶斯滤波(DBF)方法。DBF 在一个新的潜在("幻想")空间上构建新的潜在变量 $h_t$,并同化观测值 $_t$。通过(i)约束花式空间上的状态转换为线性,以及(ii)学习高斯逆观测算子$q(h_t|_t)$,DBF的后验总是保持高斯。与众不同的是,后验的结构化设计为后验的递归计算提供了一个解析公式,而无需在时间步长内累积蒙特卡罗采样误差。DBF 通过最大化证据下限来寻求高斯逆观测算子 $q(h_t|o_t)$ 和其他潜在 SSM 参数(如动力学矩阵)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信