{"title":"Counterfactual Explanations in the Big Picture: An Approach for Process Prediction-Driven Job-Shop Scheduling Optimization","authors":"Nijat Mehdiyev, Maxim Majlatow, Peter Fettke","doi":"10.1007/s12559-024-10294-0","DOIUrl":null,"url":null,"abstract":"<p>In this study, we propose a pioneering framework for generating multi-objective counterfactual explanations in job-shop scheduling contexts, combining predictive process monitoring with advanced mathematical optimization techniques. Using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for multi-objective optimization, our approach enhances the generation of counterfactual explanations that illuminate potential enhancements at both the operational and systemic levels. Validated with real-world data, our methodology underscores the superiority of NSGA-II in crafting pertinent and actionable counterfactual explanations, surpassing traditional methods in both efficiency and practical relevance. This work advances the domains of explainable artificial intelligence (XAI), predictive process monitoring, and combinatorial optimization, providing an effective tool for improving automated scheduling systems’ clarity, and decision-making capabilities.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10294-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose a pioneering framework for generating multi-objective counterfactual explanations in job-shop scheduling contexts, combining predictive process monitoring with advanced mathematical optimization techniques. Using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for multi-objective optimization, our approach enhances the generation of counterfactual explanations that illuminate potential enhancements at both the operational and systemic levels. Validated with real-world data, our methodology underscores the superiority of NSGA-II in crafting pertinent and actionable counterfactual explanations, surpassing traditional methods in both efficiency and practical relevance. This work advances the domains of explainable artificial intelligence (XAI), predictive process monitoring, and combinatorial optimization, providing an effective tool for improving automated scheduling systems’ clarity, and decision-making capabilities.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.