RA-Net: Region-Aware Attention Network for Skin Lesion Segmentation

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Asim Naveed, Syed S. Naqvi, Shahzaib Iqbal, Imran Razzak, Haroon Ahmed Khan, Tariq M. Khan
{"title":"RA-Net: Region-Aware Attention Network for Skin Lesion Segmentation","authors":"Asim Naveed, Syed S. Naqvi, Shahzaib Iqbal, Imran Razzak, Haroon Ahmed Khan, Tariq M. Khan","doi":"10.1007/s12559-024-10304-1","DOIUrl":null,"url":null,"abstract":"<p>The precise segmentation of skin lesion in dermoscopic images is essential for the early detection of skin cancer. However, the irregular shapes of the lesions, the absence of sharp edges, the existence of artifacts like hair follicles, and marker color make this task difficult. Currently, fully connected networks (FCNs) and U-Nets are the most commonly used techniques for melanoma segmentation. However, as the depth of these neural network models increases, they become prone to various challenges. The most pertinent of these challenges are the vanishing gradient problem and the parameter redundancy problem. These can result in a decline in Jaccard index of the segmentation model. This study introduces a novel end-to-end trainable network designed for skin lesion segmentation. The proposed methodology consists of an encoder-decoder, a region-aware attention approach, and guided loss function. The trainable parameters are reduced using depth-wise separable convolution, and the attention features are refined using a guided loss, resulting in a high Jaccard index. We assessed the effectiveness of our proposed RA-Net on four frequently utilized benchmark datasets for skin lesion segmentation: ISIC 2016, ISIC 2017, ISIC 2018, and PH2. The empirical results validate that our method achieves state-of-the-art performance, as indicated by a notably high Jaccard index.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10304-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The precise segmentation of skin lesion in dermoscopic images is essential for the early detection of skin cancer. However, the irregular shapes of the lesions, the absence of sharp edges, the existence of artifacts like hair follicles, and marker color make this task difficult. Currently, fully connected networks (FCNs) and U-Nets are the most commonly used techniques for melanoma segmentation. However, as the depth of these neural network models increases, they become prone to various challenges. The most pertinent of these challenges are the vanishing gradient problem and the parameter redundancy problem. These can result in a decline in Jaccard index of the segmentation model. This study introduces a novel end-to-end trainable network designed for skin lesion segmentation. The proposed methodology consists of an encoder-decoder, a region-aware attention approach, and guided loss function. The trainable parameters are reduced using depth-wise separable convolution, and the attention features are refined using a guided loss, resulting in a high Jaccard index. We assessed the effectiveness of our proposed RA-Net on four frequently utilized benchmark datasets for skin lesion segmentation: ISIC 2016, ISIC 2017, ISIC 2018, and PH2. The empirical results validate that our method achieves state-of-the-art performance, as indicated by a notably high Jaccard index.

Abstract Image

RA-Net:用于皮损分割的区域感知注意力网络
精确分割皮肤镜图像中的皮损对于早期检测皮肤癌至关重要。然而,由于皮损形状不规则、没有锐利边缘、存在毛囊等伪影以及标记颜色等原因,这项任务很难完成。目前,全连接网络(FCN)和 U-Nets 是最常用的黑色素瘤分割技术。然而,随着这些神经网络模型深度的增加,它们容易面临各种挑战。其中最相关的挑战是梯度消失问题和参数冗余问题。这些问题会导致分割模型的 Jaccard 指数下降。本研究介绍了一种新颖的端到端可训练网络,设计用于皮损分割。所提出的方法包括编码器-解码器、区域感知注意力方法和引导损失函数。使用深度可分离卷积减少了可训练参数,并使用引导损失对注意力特征进行了改进,从而获得了较高的 Jaccard 指数。我们在四个常用的皮损分割基准数据集上评估了所提出的 RA-Net 的有效性:ISIC 2016、ISIC 2017、ISIC 2018 和 PH2。实证结果验证了我们的方法达到了最先进的性能,这一点从明显较高的 Jaccard 指数可以看出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Computation
Cognitive Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-NEUROSCIENCES
CiteScore
9.30
自引率
3.70%
发文量
116
审稿时长
>12 weeks
期刊介绍: Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信