{"title":"Efficient Deep Learning Approach for Diagnosis of Attention-Deficit/Hyperactivity Disorder in Children Based on EEG Signals","authors":"Hamid Jahani, Ali Asghar Safaei","doi":"10.1007/s12559-024-10302-3","DOIUrl":null,"url":null,"abstract":"<p>Attention-deficit/hyperactivity disorder (ADHD) is a behavioral disorder in children that can persist into adulthood if not treated. Early diagnosis of this condition is crucial for effective treatment. The database includes 61 children with attention-deficit/hyperactivity disorder and 60 healthy children as a control group. To diagnose children with ADHD, features were first extracted from EEG signals. Next, a convolutional neural network model was trained, and a new residual network was introduced. The two proposed models were evaluated using tenfold cross-validation on the test data. The average accuracy and F1 score were 92.52% and 93.6%, respectively, for the convolutional model and 96.8% and 97.1% for the ResNet model on the epoch data, respectively. On the other hand, accuracy for subject-based prediction was 96.5% for the convolution model and 98.6% for the modified ResNet model. Accuracy, precision, recall, and F1 score for the proposed ResNet model are better than the convolution model proposed in previous studies and better than the proposed model in the literature. This work presents a paradigm shift in the cognitive-inspired domain by introducing a novel ResNet model for ADHD diagnosis. The model’s exceptional accuracy, exceeding conventional methods, showcases its potential as a biologically inspired tool. This opens avenues for exploring the neurological underpinnings of ADHD because the model can be used for the manifold learning of EEG signals. Analyzing the proposed network can lead to a deeper understanding of EEG, bridging the gap between artificial intelligence and cognitive neuroscience. The paper’s innovative approach has far-reaching implications, offering a concrete application of cognitive principles to improve mental health diagnostics in children. It is important to note that the data were augmented and the classification model is based on a single experiment containing a very small number of children but the results, and accuracy of classification, are based on classifying augmented data samples that compose the EEG signals of this small number of individuals. It is prudent to undertake a comprehensive investigation into the efficacy of these models across a broad cohort of subjects.\n</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10302-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a behavioral disorder in children that can persist into adulthood if not treated. Early diagnosis of this condition is crucial for effective treatment. The database includes 61 children with attention-deficit/hyperactivity disorder and 60 healthy children as a control group. To diagnose children with ADHD, features were first extracted from EEG signals. Next, a convolutional neural network model was trained, and a new residual network was introduced. The two proposed models were evaluated using tenfold cross-validation on the test data. The average accuracy and F1 score were 92.52% and 93.6%, respectively, for the convolutional model and 96.8% and 97.1% for the ResNet model on the epoch data, respectively. On the other hand, accuracy for subject-based prediction was 96.5% for the convolution model and 98.6% for the modified ResNet model. Accuracy, precision, recall, and F1 score for the proposed ResNet model are better than the convolution model proposed in previous studies and better than the proposed model in the literature. This work presents a paradigm shift in the cognitive-inspired domain by introducing a novel ResNet model for ADHD diagnosis. The model’s exceptional accuracy, exceeding conventional methods, showcases its potential as a biologically inspired tool. This opens avenues for exploring the neurological underpinnings of ADHD because the model can be used for the manifold learning of EEG signals. Analyzing the proposed network can lead to a deeper understanding of EEG, bridging the gap between artificial intelligence and cognitive neuroscience. The paper’s innovative approach has far-reaching implications, offering a concrete application of cognitive principles to improve mental health diagnostics in children. It is important to note that the data were augmented and the classification model is based on a single experiment containing a very small number of children but the results, and accuracy of classification, are based on classifying augmented data samples that compose the EEG signals of this small number of individuals. It is prudent to undertake a comprehensive investigation into the efficacy of these models across a broad cohort of subjects.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.