{"title":"An approach for flood flow prediction utilizing new hybrids of ANFIS with several optimization techniques: a case study","authors":"Negin Ahmadi, Sina Fard Moradinia","doi":"10.2166/nh.2024.191","DOIUrl":null,"url":null,"abstract":"<p>Using machine learning methods is efficient in predicting floods in areas where complete data is not available. Therefore, this study considers the Adaptive Neuro-Fuzzy Inference System (ANFIS) model combined with evolutionary algorithms, namely Harris Hawks Optimization (HHO) and Arithmetic Optimization Algorithm (AOA), to predict the flood of Shahrchay River in the northwest of Iran. The data used included the daily data of precipitation, evaporation, and runoff in the years 2016 and 2017, where 70% of the data were used for model training and the rest for testing the models. The results showed that although the ANFIS model provided values with high errors in several steps, especially in steps with maximum or minimum values, the use of HHO and AOA optimization algorithms resulted in a significant reduction in the error values. The ANFIS-AOA model utilizing an input scenario including the flow in the previous one to three days exerted the most promising results in the test data, with Nash Sutcliffe Efficiency (NSE) Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) of 0.93, 1.34, and 0.69, respectively. According to Taylor's diagram, the ANFIS-AOA hybrid algorithm predicts flood values with greater performance than the other models.</p>","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2024.191","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Using machine learning methods is efficient in predicting floods in areas where complete data is not available. Therefore, this study considers the Adaptive Neuro-Fuzzy Inference System (ANFIS) model combined with evolutionary algorithms, namely Harris Hawks Optimization (HHO) and Arithmetic Optimization Algorithm (AOA), to predict the flood of Shahrchay River in the northwest of Iran. The data used included the daily data of precipitation, evaporation, and runoff in the years 2016 and 2017, where 70% of the data were used for model training and the rest for testing the models. The results showed that although the ANFIS model provided values with high errors in several steps, especially in steps with maximum or minimum values, the use of HHO and AOA optimization algorithms resulted in a significant reduction in the error values. The ANFIS-AOA model utilizing an input scenario including the flow in the previous one to three days exerted the most promising results in the test data, with Nash Sutcliffe Efficiency (NSE) Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) of 0.93, 1.34, and 0.69, respectively. According to Taylor's diagram, the ANFIS-AOA hybrid algorithm predicts flood values with greater performance than the other models.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.