Xuehu Zhu, Rongzhu Zhao, Dan Zeng, Qian Zhao, Jun Zhang
{"title":"Dimension reduction-based adaptive-to-model semi-supervised classification","authors":"Xuehu Zhu, Rongzhu Zhao, Dan Zeng, Qian Zhao, Jun Zhang","doi":"10.1007/s00362-024-01578-6","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a novel Dimension Reduction-based Adaptive-to-model Semi-supervised Classification method, specifically designed for scenarios where the number of unlabeled samples significantly exceeds that of labeled samples. Leveraging the strengths of sufficient dimension reduction and non-parametric interpolation, the method significantly amplifies the value derived from unlabeled samples, thus enhancing the precision of the classification model. An iterative version is also presented to extract further insights from the interpolated unlabeled samples. Theoretical analyses and numerical studies demonstrate substantial improvements in classifier accuracy, particularly in the context of model misspecified. The effectiveness of the proposed method in enhancing classification accuracy is further substantiated through two empirical analyses: credit card application evaluations and coronary heart disease diagnostic assessments.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"83 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01578-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel Dimension Reduction-based Adaptive-to-model Semi-supervised Classification method, specifically designed for scenarios where the number of unlabeled samples significantly exceeds that of labeled samples. Leveraging the strengths of sufficient dimension reduction and non-parametric interpolation, the method significantly amplifies the value derived from unlabeled samples, thus enhancing the precision of the classification model. An iterative version is also presented to extract further insights from the interpolated unlabeled samples. Theoretical analyses and numerical studies demonstrate substantial improvements in classifier accuracy, particularly in the context of model misspecified. The effectiveness of the proposed method in enhancing classification accuracy is further substantiated through two empirical analyses: credit card application evaluations and coronary heart disease diagnostic assessments.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.