Oxygen Stoichiometry Engineering in P‐Type NiOx for High‐Performance NiO/Ga2O3 Heterostructure p‐n Diode

IF 2.5 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuehua Hong, Xuefeng Zheng, Hao Zhang, Yunlong He, Tian Zhu, Kai Liu, Ang Li, Xiaohua Ma, Weidong Zhang, Jianfu Zhang, Yue Hao
{"title":"Oxygen Stoichiometry Engineering in P‐Type NiOx for High‐Performance NiO/Ga2O3 Heterostructure p‐n Diode","authors":"Yuehua Hong, Xuefeng Zheng, Hao Zhang, Yunlong He, Tian Zhu, Kai Liu, Ang Li, Xiaohua Ma, Weidong Zhang, Jianfu Zhang, Yue Hao","doi":"10.1002/pssr.202400109","DOIUrl":null,"url":null,"abstract":"P‐type NiO<jats:sub>x</jats:sub> was employed for the fabrication of NiO/Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> p‐n diode. Addressing the challenge of low hole mobility in NiO<jats:sub>x</jats:sub>, an extensive investigation into the impact of oxygen stoichiometry engineering in NiO<jats:sub>x</jats:sub> was conducted. The meticulous optimization of the O<jats:sub>2</jats:sub>/Ar ratio to 30% during the sputtering process resulted in significant improvements, notably achieving enhanced hole mobility of 1.61 cm<jats:sup>2</jats:sup>/V·s. It led to a low specific on‐resistance of 2.79 mΩ·cm<jats:sup>2</jats:sup> and a high rectification ratio of ∽10<jats:sup>11</jats:sup>, underscoring the efficacy of recombination transport mechanism driven by enhanced hole mobility. Detailed band alignment analysis between NiO<jats:sub>x</jats:sub> and Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> revealed a small band offset, with a valence band offset of 2.47 eV and a conduction band offset of 1.70 eV. It suggests a tailored modification of band alignment through the engineering the oxygen stoichiometry in NiO<jats:sub>x</jats:sub>, facilitating enhanced recombination conduction. The device exhibits a suprior breakdown voltage (V<jats:sub>b</jats:sub>) of 2780 V and a notable Baliga’s figure of merit (BFOM) of 2.77 GW/cm<jats:sup>2</jats:sup>, surpassing the SiC unipolar figure of merit. The insights gained from this work are expected to inform future designs and optimizations of high‐performance Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> electronic devices.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"33 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400109","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

P‐type NiOx was employed for the fabrication of NiO/Ga2O3 p‐n diode. Addressing the challenge of low hole mobility in NiOx, an extensive investigation into the impact of oxygen stoichiometry engineering in NiOx was conducted. The meticulous optimization of the O2/Ar ratio to 30% during the sputtering process resulted in significant improvements, notably achieving enhanced hole mobility of 1.61 cm2/V·s. It led to a low specific on‐resistance of 2.79 mΩ·cm2 and a high rectification ratio of ∽1011, underscoring the efficacy of recombination transport mechanism driven by enhanced hole mobility. Detailed band alignment analysis between NiOx and Ga2O3 revealed a small band offset, with a valence band offset of 2.47 eV and a conduction band offset of 1.70 eV. It suggests a tailored modification of band alignment through the engineering the oxygen stoichiometry in NiOx, facilitating enhanced recombination conduction. The device exhibits a suprior breakdown voltage (Vb) of 2780 V and a notable Baliga’s figure of merit (BFOM) of 2.77 GW/cm2, surpassing the SiC unipolar figure of merit. The insights gained from this work are expected to inform future designs and optimizations of high‐performance Ga2O3 electronic devices.This article is protected by copyright. All rights reserved.
用于高性能氧化镍/氧化镓异质结构 p-n 二极管的 P 型氧化镍中氧的化学计量工程
P 型氧化镍被用于制造氧化镍/Ga2O3 p-n 二极管。针对 NiOx 中空穴迁移率低的难题,对 NiOx 中氧的化学计量工程的影响进行了广泛的研究。在溅射过程中将 O2/Ar 比精心优化到 30%,结果取得了显著的改善,尤其是实现了 1.61 cm2/V-s 的增强空穴迁移率。这导致了 2.79 mΩ-cm2 的低比导通电阻和 ∽1011 的高整流比,凸显了由增强的空穴迁移率驱动的重组传输机制的有效性。对 NiOx 和 Ga2O3 的详细能带排列分析表明,它们的能带偏移很小,价带偏移为 2.47 eV,导带偏移为 1.70 eV。这表明,通过对 NiOx 中氧的化学计量进行工程设计,可以有针对性地改变能带排列,从而促进增强的重组传导。该器件的击穿电压(Vb)高达 2780 V,Baliga 优越性能系数(BFOM)为 2.77 GW/cm2,超过了碳化硅单极优越性能系数。从这项工作中获得的启示有望为未来高性能 Ga2O3 电子器件的设计和优化提供参考。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica Status Solidi-Rapid Research Letters
Physica Status Solidi-Rapid Research Letters 物理-材料科学:综合
CiteScore
5.20
自引率
3.60%
发文量
208
审稿时长
1.4 months
期刊介绍: Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers. The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信