A Three-Grid High-Order Immersed Finite Element Method for the Analysis of CAD Models

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Eky Febrianto , Jakub Šístek , Pavel Kůs , Matija Kecman , Fehmi Cirak
{"title":"A Three-Grid High-Order Immersed Finite Element Method for the Analysis of CAD Models","authors":"Eky Febrianto ,&nbsp;Jakub Šístek ,&nbsp;Pavel Kůs ,&nbsp;Matija Kecman ,&nbsp;Fehmi Cirak","doi":"10.1016/j.cad.2024.103730","DOIUrl":null,"url":null,"abstract":"<div><p>The automated finite element analysis of complex CAD models using boundary-fitted meshes is rife with difficulties. Immersed finite element methods are intrinsically more robust but usually less accurate. In this work, we introduce an efficient, robust, high-order immersed finite element method for complex CAD models. Our approach relies on three adaptive structured grids: a geometry grid for representing the implicit geometry, a finite element grid for discretising physical fields and a quadrature grid for evaluating the finite element integrals. The geometry grid is a sparse VDB (Volumetric Dynamic B+ tree) grid that is highly refined close to physical domain boundaries. The finite element grid consists of a forest of octree grids distributed over several processors, and the quadrature grid in each finite element cell is an octree grid constructed in a bottom-up fashion. The resolution of the quadrature grid ensures that finite element integrals are evaluated with sufficient accuracy and that any sub-grid geometric features, like small holes or corners, are resolved up to a desired resolution. The conceptual simplicity and modularity of our approach make it possible to reuse open-source libraries, i.e. openVDB and p4est for implementing the geometry and finite element grids, respectively, and BDDCML for iteratively solving the discrete systems of equations in parallel using domain decomposition. We demonstrate the efficiency and robustness of the proposed approach by solving the Poisson equation on domains described by complex CAD models and discretised with tens of millions of degrees of freedom. The solution field is discretised using linear and quadratic Lagrange basis functions.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524000575/pdfft?md5=4a08556c1ca14857794f138fb192f80d&pid=1-s2.0-S0010448524000575-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000575","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The automated finite element analysis of complex CAD models using boundary-fitted meshes is rife with difficulties. Immersed finite element methods are intrinsically more robust but usually less accurate. In this work, we introduce an efficient, robust, high-order immersed finite element method for complex CAD models. Our approach relies on three adaptive structured grids: a geometry grid for representing the implicit geometry, a finite element grid for discretising physical fields and a quadrature grid for evaluating the finite element integrals. The geometry grid is a sparse VDB (Volumetric Dynamic B+ tree) grid that is highly refined close to physical domain boundaries. The finite element grid consists of a forest of octree grids distributed over several processors, and the quadrature grid in each finite element cell is an octree grid constructed in a bottom-up fashion. The resolution of the quadrature grid ensures that finite element integrals are evaluated with sufficient accuracy and that any sub-grid geometric features, like small holes or corners, are resolved up to a desired resolution. The conceptual simplicity and modularity of our approach make it possible to reuse open-source libraries, i.e. openVDB and p4est for implementing the geometry and finite element grids, respectively, and BDDCML for iteratively solving the discrete systems of equations in parallel using domain decomposition. We demonstrate the efficiency and robustness of the proposed approach by solving the Poisson equation on domains described by complex CAD models and discretised with tens of millions of degrees of freedom. The solution field is discretised using linear and quadratic Lagrange basis functions.

用于分析 CAD 模型的三网格高阶沉浸式有限元方法
使用边界拟合网格对复杂的 CAD 模型进行自动有限元分析困难重重。沉浸式有限元方法本质上更加稳健,但通常精度较低。在这项工作中,我们为复杂的 CAD 模型引入了一种高效、稳健的高阶沉浸式有限元方法。我们的方法依赖于三个自适应结构网格:用于表示隐式几何的几何网格、用于离散物理场的有限元网格以及用于评估有限元积分的正交网格。几何网格是一个稀疏的 VDB(体积动态 B+树)网格,在物理域边界附近高度细化。有限元网格由分布在多个处理器上的八叉网格组成,每个有限元单元中的正交网格都是以自下而上的方式构建的八叉网格。正交网格的分辨率可确保以足够的精度评估有限元积分,并确保任何子网格的几何特征(如小孔或拐角)都能按照所需的分辨率得到解决。我们的方法概念简单、模块化,因此可以重复使用开源库,即分别用于实现几何和有限元网格的 openVDB 和 p4est,以及利用域分解并行迭代求解离散方程组的 BDDCML。我们通过在复杂 CAD 模型描述的域上求解泊松方程,并用数千万个自由度离散化,证明了所提方法的效率和稳健性。求解域使用线性和二次拉格朗日基函数离散化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信