{"title":"Sign-changing solutions for coupled Schrödinger system","authors":"Jing Zhang","doi":"10.1186/s13661-024-01881-z","DOIUrl":null,"url":null,"abstract":"In this paper we study the following nonlinear Schrödinger system: $$ \\textstyle\\begin{cases} -\\Delta u+\\alpha u = \\vert u \\vert ^{p-1}u+\\frac{2}{q+1} \\lambda \\vert u \\vert ^{ \\frac{p-3}{2}}u \\vert v \\vert ^{\\frac{q+1}{2}},\\quad x \\in \\mathbb{R}^{3}, \\\\ -\\Delta v+\\beta v = \\vert v \\vert ^{q-1}v+\\frac{2}{p+1} \\lambda \\vert u \\vert ^{ \\frac{p+1}{2}} \\vert v \\vert ^{\\frac{q-3}{2}}v ,\\quad x \\in \\mathbb{R}^{3}, \\\\ u(x)\\rightarrow 0,\\qquad v(x)\\rightarrow 0,\\quad \\text{as } \\vert x \\vert \\rightarrow \\infty , \\end{cases} $$ where $3\\leq p, q<5$ , α, β are positive parameters. We show that there exists $\\lambda _{k}>0$ such that the equation has at least k radially symmetric sign-changing solutions and at least k seminodal solutions for each $k\\in \\mathbb{N}$ and $\\lambda \\in (0, \\lambda _{k})$ . Moreover, we show the existence of a least energy radially symmetric sign-changing solution for each $\\lambda \\in (0, \\lambda _{0})$ where $\\lambda _{0}\\in (0, \\lambda _{1}]$ .","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"92 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01881-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the following nonlinear Schrödinger system: $$ \textstyle\begin{cases} -\Delta u+\alpha u = \vert u \vert ^{p-1}u+\frac{2}{q+1} \lambda \vert u \vert ^{ \frac{p-3}{2}}u \vert v \vert ^{\frac{q+1}{2}},\quad x \in \mathbb{R}^{3}, \\ -\Delta v+\beta v = \vert v \vert ^{q-1}v+\frac{2}{p+1} \lambda \vert u \vert ^{ \frac{p+1}{2}} \vert v \vert ^{\frac{q-3}{2}}v ,\quad x \in \mathbb{R}^{3}, \\ u(x)\rightarrow 0,\qquad v(x)\rightarrow 0,\quad \text{as } \vert x \vert \rightarrow \infty , \end{cases} $$ where $3\leq p, q<5$ , α, β are positive parameters. We show that there exists $\lambda _{k}>0$ such that the equation has at least k radially symmetric sign-changing solutions and at least k seminodal solutions for each $k\in \mathbb{N}$ and $\lambda \in (0, \lambda _{k})$ . Moreover, we show the existence of a least energy radially symmetric sign-changing solution for each $\lambda \in (0, \lambda _{0})$ where $\lambda _{0}\in (0, \lambda _{1}]$ .
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.