Modified projection method and strong convergence theorem for solving variational inequality problems with non-Lipschitz operators

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhongbing Xie, Huanqin Wu, Liya Liu
{"title":"Modified projection method and strong convergence theorem for solving variational inequality problems with non-Lipschitz operators","authors":"Zhongbing Xie, Huanqin Wu, Liya Liu","doi":"10.1007/s11075-024-01851-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce a modified projection method and give a strong convergence theorem for solving variational inequality problems in real Hilbert spaces. Under mild assumptions, there exists a novel line-search rule that makes the proposed algorithm suitable for non-Lipschitz continuous and pseudo-monotone operators. Compared with other known algorithms in numerical experiments, it is shown that our algorithm has better numerical performance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01851-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a modified projection method and give a strong convergence theorem for solving variational inequality problems in real Hilbert spaces. Under mild assumptions, there exists a novel line-search rule that makes the proposed algorithm suitable for non-Lipschitz continuous and pseudo-monotone operators. Compared with other known algorithms in numerical experiments, it is shown that our algorithm has better numerical performance.

Abstract Image

解决非 Lipschitz 算子的变分不等式问题的修正投影法和强收敛定理
本文介绍了一种改进的投影法,并给出了求解实希尔伯特空间中变不等式问题的强收敛定理。在温和的假设条件下,存在一种新颖的线性搜索规则,使得所提出的算法适用于非 Lipschitz 连续和伪单调算子。数值实验表明,与其他已知算法相比,我们的算法具有更好的数值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信