ON THE STRUCTURE OF BOCHVAR ALGEBRAS

STEFANO BONZIO, MICHELE PRA BALDI
{"title":"ON THE STRUCTURE OF BOCHVAR ALGEBRAS","authors":"STEFANO BONZIO, MICHELE PRA BALDI","doi":"10.1017/s175502032400008x","DOIUrl":null,"url":null,"abstract":"<p>Bochvar algebras consist of the quasivariety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240530141428462-0247:S175502032400008X:S175502032400008X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {BCA}$</span></span></img></span></span> playing the role of equivalent algebraic semantics for Bochvar (external) logic, a logical formalism introduced by Bochvar [4] in the realm of (weak) Kleene logics. In this paper, we provide an algebraic investigation of the structure of Bochvar algebras. In particular, we prove a representation theorem based on Płonka sums and investigate the lattice of subquasivarieties, showing that Bochvar (external) logic has only one proper extension (apart from classical logic), algebraized by the subquasivariety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240530141428462-0247:S175502032400008X:S175502032400008X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {NBCA}$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240530141428462-0247:S175502032400008X:S175502032400008X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {BCA}$</span></span></img></span></span>. Furthermore, we address the problem of (passive) structural completeness ((P)SC) for each of them, showing that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240530141428462-0247:S175502032400008X:S175502032400008X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {NBCA}$</span></span></img></span></span> is SC, while <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240530141428462-0247:S175502032400008X:S175502032400008X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {BCA}$</span></span></img></span></span> is not even PSC. Finally, we prove that both <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240530141428462-0247:S175502032400008X:S175502032400008X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {BCA}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240530141428462-0247:S175502032400008X:S175502032400008X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {NBCA}$</span></span></img></span></span> enjoy the amalgamation property (AP).</p>","PeriodicalId":501566,"journal":{"name":"The Review of Symbolic Logic","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Review of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s175502032400008x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bochvar algebras consist of the quasivariety Abstract Image$\mathsf {BCA}$ playing the role of equivalent algebraic semantics for Bochvar (external) logic, a logical formalism introduced by Bochvar [4] in the realm of (weak) Kleene logics. In this paper, we provide an algebraic investigation of the structure of Bochvar algebras. In particular, we prove a representation theorem based on Płonka sums and investigate the lattice of subquasivarieties, showing that Bochvar (external) logic has only one proper extension (apart from classical logic), algebraized by the subquasivariety Abstract Image$\mathsf {NBCA}$ of Abstract Image$\mathsf {BCA}$. Furthermore, we address the problem of (passive) structural completeness ((P)SC) for each of them, showing that Abstract Image$\mathsf {NBCA}$ is SC, while Abstract Image$\mathsf {BCA}$ is not even PSC. Finally, we prove that both Abstract Image$\mathsf {BCA}$ and Abstract Image$\mathsf {NBCA}$ enjoy the amalgamation property (AP).

关于布尔代数结构的研究
波赫瓦尔(外)逻辑是波赫瓦尔[4]在(弱)克莱因逻辑领域提出的一种逻辑形式主义,由扮演波赫瓦尔(外)逻辑等价代数语义角色的准变量 $\mathsf {BCA}$ 组成。在本文中,我们用代数方法研究了波赫瓦尔代数的结构。特别是,我们证明了一个基于普隆卡和的表示定理,并研究了子类群的晶格,表明波赫瓦尔(外部)逻辑只有一个适当的扩展(古典逻辑除外),即由 $\mathsf {BCA}$ 的子类群 $\mathsf {NBCA}$ 代数化。此外,我们还讨论了它们各自的(被动)结构完备性((P)SC)问题,证明了 $mathsf {NBCA}$ 是 SC,而 $mathsf {BCA}$ 甚至不是 PSC。最后,我们证明 $\mathsf {BCA}$ 和 $\mathsf {NBCA}$ 都享有合并属性 (AP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信