Non-commutative Barge-Ghys Quasimorphisms

IF 0.9 2区 数学 Q2 MATHEMATICS
Michael Brandenbursky, Misha Verbitsky
{"title":"Non-commutative Barge-Ghys Quasimorphisms","authors":"Michael Brandenbursky, Misha Verbitsky","doi":"10.1093/imrn/rnae119","DOIUrl":null,"url":null,"abstract":"A (non-commutative) Ulam quasimorphism is a map $q$ from a group $\\Gamma $ to a topological group $G$ such that $q(xy)q(y)^{-1}q(x)^{-1}$ belongs to a fixed compact subset of $G$. Generalizing the construction of Barge and Ghys, we build a family of quasimorphisms on a fundamental group of a closed manifold $M$ of negative sectional curvature, taking values in an arbitrary Lie group. This construction, which generalizes the Barge-Ghys quasimorphisms, associates a quasimorphism to any principal $G$-bundle with connection on $M$. Kapovich and Fujiwara have shown that all quasimorphisms taking values in a discrete group can be constructed from group homomorphisms and quasimorphisms taking values in a commutative group. We construct Barge-Ghys type quasimorphisms taking prescribed values on a given subset in $\\Gamma $, producing counterexamples to the Kapovich and Fujiwara theorem for quasimorphisms taking values in a Lie group. Our construction also generalizes a result proven by D. Kazhdan in his paper “On $\\varepsilon $-representations”. Kazhdan has proved that for any $\\varepsilon>0$, there exists an $\\varepsilon $-representation of the fundamental group of a Riemann surface of genus 2 which cannot be $1/10$-approximated by a representation. We generalize his result by constructing an $\\varepsilon $-representation of the fundamental group of a closed manifold of negative sectional curvature taking values in an arbitrary Lie group.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"41 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A (non-commutative) Ulam quasimorphism is a map $q$ from a group $\Gamma $ to a topological group $G$ such that $q(xy)q(y)^{-1}q(x)^{-1}$ belongs to a fixed compact subset of $G$. Generalizing the construction of Barge and Ghys, we build a family of quasimorphisms on a fundamental group of a closed manifold $M$ of negative sectional curvature, taking values in an arbitrary Lie group. This construction, which generalizes the Barge-Ghys quasimorphisms, associates a quasimorphism to any principal $G$-bundle with connection on $M$. Kapovich and Fujiwara have shown that all quasimorphisms taking values in a discrete group can be constructed from group homomorphisms and quasimorphisms taking values in a commutative group. We construct Barge-Ghys type quasimorphisms taking prescribed values on a given subset in $\Gamma $, producing counterexamples to the Kapovich and Fujiwara theorem for quasimorphisms taking values in a Lie group. Our construction also generalizes a result proven by D. Kazhdan in his paper “On $\varepsilon $-representations”. Kazhdan has proved that for any $\varepsilon>0$, there exists an $\varepsilon $-representation of the fundamental group of a Riemann surface of genus 2 which cannot be $1/10$-approximated by a representation. We generalize his result by constructing an $\varepsilon $-representation of the fundamental group of a closed manifold of negative sectional curvature taking values in an arbitrary Lie group.
非交换的巴杰-盖斯准变形
一个(非交换)乌拉姆类变是一个从群 $\Gamma $ 到拓扑群 $G$ 的映射 $q$,使得 $q(xy)q(y)^{-1}q(x)^{-1}$ 属于 $G$ 的一个固定紧凑子集。通过推广巴杰和吉斯的构造,我们在负截面曲率封闭流形 $M$ 的基群上建立了一个在任意李群中取值的准变形族。这一构造概括了巴杰-盖斯准同态,它将一个准同态与 M$ 上任何具有连接关系的主 G$ 束关联起来。卡波维奇和藤原已经证明,所有在离散群中取值的类同态都可以从群同态和在交换群中取值的类同态中构造出来。我们构造了在 $\Gamma $ 中给定子集上取定值的 Barge-Ghys 型准变形,从而产生了卡波维奇和藤原定理关于在 Lie 群中取值的准变形的反例。我们的构造还推广了卡兹丹(D. Kazhdan)在他的论文 "论 $\varepsilon $-representations" 中证明的一个结果。卡兹丹证明了对于任意$\varepsilon>0$,都存在一个2属黎曼曲面基本群的$\varepsilon $-重现,它不能被1/10$的重现所近似。我们通过构造一个在任意李群中取值的负截面曲率封闭流形的基群的$\varepsilon$-表示来推广他的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信