On an ErdŐs–Kac-Type Conjecture of Elliott

IF 0.6 4区 数学 Q3 MATHEMATICS
Ofir Gorodetsky, Lasse Grimmelt
{"title":"On an ErdŐs–Kac-Type Conjecture of Elliott","authors":"Ofir Gorodetsky, Lasse Grimmelt","doi":"10.1093/qmath/haae026","DOIUrl":null,"url":null,"abstract":"Elliott and Halberstam proved that $\\sum_{p \\lt n} 2^{\\omega(n-p)}$ is asymptotic to $\\phi(n)$. In analogy to the Erdős–Kac theorem, Elliott conjectured that if one restricts the summation to primes p such that $\\omega(n-p)\\le 2 \\log \\log n+\\lambda(2\\log \\log n)^{1/2}$ then the sum will be asymptotic to $\\phi(n)\\int_{-\\infty}^{\\lambda} \\mathrm{e}^{-t^2/2}\\,\\mathrm{d}t/\\sqrt{2\\pi}$. We show that this conjecture follows from the Bombieri–Vinogradov theorem. We further prove a related result involving Poisson–Dirichlet distribution, employing deeper lying level of distribution results of the primes.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"148 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Elliott and Halberstam proved that $\sum_{p \lt n} 2^{\omega(n-p)}$ is asymptotic to $\phi(n)$. In analogy to the Erdős–Kac theorem, Elliott conjectured that if one restricts the summation to primes p such that $\omega(n-p)\le 2 \log \log n+\lambda(2\log \log n)^{1/2}$ then the sum will be asymptotic to $\phi(n)\int_{-\infty}^{\lambda} \mathrm{e}^{-t^2/2}\,\mathrm{d}t/\sqrt{2\pi}$. We show that this conjecture follows from the Bombieri–Vinogradov theorem. We further prove a related result involving Poisson–Dirichlet distribution, employing deeper lying level of distribution results of the primes.
论艾略特的一个埃尔德Ő斯-卡克型猜想
艾略特和哈尔伯斯塔姆证明了 $\sum_{p \lt n} 2^{\omega(n-p)}$ 是渐近于 $\phi(n)$ 的。与厄尔多斯-卡克定理类似、埃利奥特猜想,如果把求和限制在素数 p 上,使得 $\omega(n-p)\le 2 \log \log n+\lambda(2\log \log n)^{1/2}$ 那么和将渐近于 $\phi(n)\int_{-\infty}^{\lambda} \mathrm{e}^{-t^2/2}、\mathrm{d}t/\sqrt{2\pi}$.我们证明了这一猜想源于 Bombieri-Vinogradov 定理。我们进一步证明了涉及泊松-德里克利特分布的相关结果,运用了更深层次的素数分布结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信