There are no post-quantum weakly pseudo-free families in any nontrivial variety of expanded groups

IF 0.5 2区 数学 Q3 MATHEMATICS
Mikhail Anokhin
{"title":"There are no post-quantum weakly pseudo-free families in any nontrivial variety of expanded groups","authors":"Mikhail Anokhin","doi":"10.1142/s0218196724500188","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span> be a finite set of finitary operation symbols and let <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span> be a nontrivial variety of <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras. Assume that for some set <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi mathvariant=\"normal\">Γ</mi><mo>⊆</mo><mi mathvariant=\"normal\">Ω</mi></math></span><span></span> of group operation symbols, all <span><math altimg=\"eq-00005.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras in <span><math altimg=\"eq-00006.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span> are groups under the operations associated with the symbols in <span><math altimg=\"eq-00007.gif\" display=\"inline\"><mi mathvariant=\"normal\">Γ</mi></math></span><span></span>. In other words, <span><math altimg=\"eq-00008.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span> is assumed to be a nontrivial variety of expanded groups. In particular, <span><math altimg=\"eq-00009.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span> can be a nontrivial variety of groups or rings. Our main result is that there are no post-quantum weakly pseudo-free families in <span><math altimg=\"eq-00010.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span>, even in the worst-case setting and/or the black-box model. In this paper, we restrict ourselves to families <span><math altimg=\"eq-00011.gif\" display=\"inline\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub><mi>|d</mi><mo>∈</mo><mi>D</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of computational and black-box <span><math altimg=\"eq-00012.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras (where <span><math altimg=\"eq-00013.gif\" display=\"inline\"><mi>D</mi><mo>⊆</mo><msup><mrow><mo stretchy=\"false\">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">}</mo></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup></math></span><span></span>) such that for every <span><math altimg=\"eq-00014.gif\" display=\"inline\"><mi>d</mi><mo>∈</mo><mi>D</mi></math></span><span></span>, each element of <span><math altimg=\"eq-00015.gif\" display=\"inline\"><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span><span></span> is represented by a unique bit string of length polynomial in the length of <span><math altimg=\"eq-00016.gif\" display=\"inline\"><mi>d</mi></math></span><span></span>. In our main result, we use straight-line programs to represent nontrivial relations between elements of <span><math altimg=\"eq-00017.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras. Note that under certain conditions, this result depends on the classification of finite simple groups. Also, we define and study some types of post-quantum weak pseudo-freeness for families of computational and black-box <span><math altimg=\"eq-00018.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":"2010 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500188","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Ω be a finite set of finitary operation symbols and let 𝔙 be a nontrivial variety of Ω-algebras. Assume that for some set ΓΩ of group operation symbols, all Ω-algebras in 𝔙 are groups under the operations associated with the symbols in Γ. In other words, 𝔙 is assumed to be a nontrivial variety of expanded groups. In particular, 𝔙 can be a nontrivial variety of groups or rings. Our main result is that there are no post-quantum weakly pseudo-free families in 𝔙, even in the worst-case setting and/or the black-box model. In this paper, we restrict ourselves to families (Hd|dD) of computational and black-box Ω-algebras (where D{0,1}) such that for every dD, each element of Hd is represented by a unique bit string of length polynomial in the length of d. In our main result, we use straight-line programs to represent nontrivial relations between elements of Ω-algebras. Note that under certain conditions, this result depends on the classification of finite simple groups. Also, we define and study some types of post-quantum weak pseudo-freeness for families of computational and black-box Ω-algebras.

在任何非数量级的扩展群中都不存在后量子弱伪自由族
让 Ω 是有限运算符号集,让 𝔙 是 Ω-gebras 的非奇异集合。假设对于某个群运算符号集 Γ⊆Ω,𝔙 中的所有 Ω-gebras 在与Γ 中符号相关的运算下都是群。换句话说,我们假定𝔙 是一个扩展群的非小类。特别是,𝔙 可以是群或环的一个非私密种类。我们的主要结果是,即使在最坏情况设置和/或黑箱模型中,𝔙中也不存在后量子弱无伪族。在本文中,我们将自己限制在计算和黑箱Ω-数组(其中 D⊆{0,1}∗)的族 (Hd|d∈D),这样对于每个 d∈D,Hd 的每个元素都由长度与 d 的长度成多项式的唯一比特串来表示。请注意,在某些条件下,这一结果取决于有限简单群的分类。此外,我们还定义并研究了计算和黑盒子Ω玻家族的一些后量子弱伪无穷性类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信