{"title":"There are no post-quantum weakly pseudo-free families in any nontrivial variety of expanded groups","authors":"Mikhail Anokhin","doi":"10.1142/s0218196724500188","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span> be a finite set of finitary operation symbols and let <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span> be a nontrivial variety of <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras. Assume that for some set <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi mathvariant=\"normal\">Γ</mi><mo>⊆</mo><mi mathvariant=\"normal\">Ω</mi></math></span><span></span> of group operation symbols, all <span><math altimg=\"eq-00005.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras in <span><math altimg=\"eq-00006.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span> are groups under the operations associated with the symbols in <span><math altimg=\"eq-00007.gif\" display=\"inline\"><mi mathvariant=\"normal\">Γ</mi></math></span><span></span>. In other words, <span><math altimg=\"eq-00008.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span> is assumed to be a nontrivial variety of expanded groups. In particular, <span><math altimg=\"eq-00009.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span> can be a nontrivial variety of groups or rings. Our main result is that there are no post-quantum weakly pseudo-free families in <span><math altimg=\"eq-00010.gif\" display=\"inline\"><mi>𝔙</mi></math></span><span></span>, even in the worst-case setting and/or the black-box model. In this paper, we restrict ourselves to families <span><math altimg=\"eq-00011.gif\" display=\"inline\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub><mi>|d</mi><mo>∈</mo><mi>D</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of computational and black-box <span><math altimg=\"eq-00012.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras (where <span><math altimg=\"eq-00013.gif\" display=\"inline\"><mi>D</mi><mo>⊆</mo><msup><mrow><mo stretchy=\"false\">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">}</mo></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup></math></span><span></span>) such that for every <span><math altimg=\"eq-00014.gif\" display=\"inline\"><mi>d</mi><mo>∈</mo><mi>D</mi></math></span><span></span>, each element of <span><math altimg=\"eq-00015.gif\" display=\"inline\"><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span><span></span> is represented by a unique bit string of length polynomial in the length of <span><math altimg=\"eq-00016.gif\" display=\"inline\"><mi>d</mi></math></span><span></span>. In our main result, we use straight-line programs to represent nontrivial relations between elements of <span><math altimg=\"eq-00017.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras. Note that under certain conditions, this result depends on the classification of finite simple groups. Also, we define and study some types of post-quantum weak pseudo-freeness for families of computational and black-box <span><math altimg=\"eq-00018.gif\" display=\"inline\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>-algebras.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":"2010 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500188","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a finite set of finitary operation symbols and let be a nontrivial variety of -algebras. Assume that for some set of group operation symbols, all -algebras in are groups under the operations associated with the symbols in . In other words, is assumed to be a nontrivial variety of expanded groups. In particular, can be a nontrivial variety of groups or rings. Our main result is that there are no post-quantum weakly pseudo-free families in , even in the worst-case setting and/or the black-box model. In this paper, we restrict ourselves to families of computational and black-box -algebras (where ) such that for every , each element of is represented by a unique bit string of length polynomial in the length of . In our main result, we use straight-line programs to represent nontrivial relations between elements of -algebras. Note that under certain conditions, this result depends on the classification of finite simple groups. Also, we define and study some types of post-quantum weak pseudo-freeness for families of computational and black-box -algebras.
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.