A homotopy orbit spectrum for profinite groups

Pub Date : 2024-05-29 DOI:10.4310/hha.2024.v26.n1.a21
Daniel G. Davis, Vojislav Petrović
{"title":"A homotopy orbit spectrum for profinite groups","authors":"Daniel G. Davis, Vojislav Petrović","doi":"10.4310/hha.2024.v26.n1.a21","DOIUrl":null,"url":null,"abstract":"For a profinite group $G$, we define an $S[[G]]$-module to be a certain type of $G$-spectrum $X$ built from an inverse system ${\\lbrace X_i \\rbrace}_i$ of $G$-spectra, with each $X_i$ naturally a $G/N_i$-spectrum, where $N_i$ is an open normal subgroup and $G \\cong \\lim_i G/N_i$. We define the homotopy orbit spectrum $X_{hG}$ and its homotopy orbit spectral sequence. We give results about when its $E_2$-term satisfies $E^{p,q}_2 \\cong \\lim_i H_p (G / N_i , \\pi_q (X_i))$. Our main result is that this occurs if ${\\lbrace \\pi_\\ast (X_i) \\rbrace}_i$ degreewise consists of compact Hausdorff abelian groups and continuous homomorphisms, with each $G/N_i$ acting continuously on $\\pi_q (X_i)$ for all $q$. If $\\pi_q (X_i)$ is additionally always profinite, then the $E_2$-term is the continuous homology of $G$ with coefficients in the graded profinite $\\widehat{\\mathbb{Z}} [[G]]$ module $\\pi_\\ast (X)$. Other results include theorems about Eilenberg–Mac Lane spectra and about when homotopy orbits preserve weak equivalences.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a profinite group $G$, we define an $S[[G]]$-module to be a certain type of $G$-spectrum $X$ built from an inverse system ${\lbrace X_i \rbrace}_i$ of $G$-spectra, with each $X_i$ naturally a $G/N_i$-spectrum, where $N_i$ is an open normal subgroup and $G \cong \lim_i G/N_i$. We define the homotopy orbit spectrum $X_{hG}$ and its homotopy orbit spectral sequence. We give results about when its $E_2$-term satisfies $E^{p,q}_2 \cong \lim_i H_p (G / N_i , \pi_q (X_i))$. Our main result is that this occurs if ${\lbrace \pi_\ast (X_i) \rbrace}_i$ degreewise consists of compact Hausdorff abelian groups and continuous homomorphisms, with each $G/N_i$ acting continuously on $\pi_q (X_i)$ for all $q$. If $\pi_q (X_i)$ is additionally always profinite, then the $E_2$-term is the continuous homology of $G$ with coefficients in the graded profinite $\widehat{\mathbb{Z}} [[G]]$ module $\pi_\ast (X)$. Other results include theorems about Eilenberg–Mac Lane spectra and about when homotopy orbits preserve weak equivalences.
分享
查看原文
无穷群的同调轨道谱
对于一个无限群 $G$,我们定义 $S[[G]]$ 模块为由 $G$ 谱的反系统 ${lbrace X_i \rbrace}_i$ 建立的某种类型的 $G$ 谱 $X$,每个 $X_i$ 自然是一个 $G/N_i$ 谱,其中 $N_i$ 是一个开放的正则子群,而 $G \cong \lim_i G/N_i$ 是一个开放的正则子群。我们定义了同调轨道谱 $X_{hG}$ 及其同调轨道谱序列。我们给出了当其 $E_2$ 项满足 $E^{p,q}_2 \cong \lim_i H_p (G / N_i , \pi_q (X_i))$ 时的结果。我们的主要结果是,如果 ${\lbrace \pi_\ast (X_i) \rbrace}_i$ 度上由紧凑的豪斯多夫无边际群和连续同态组成,并且每个 $G/N_i$ 对所有 $q$ 连续作用于 $\pi_q (X_i)$ ,那么就会出现这种情况。如果 $\pi_q (X_i)$ 总是无限的,那么 $E_2$ 项就是 $G$ 的连续同调,其系数在分级的无限 $\widehat\{mathbb{Z}} 中。[[G]]$ 模块 $\pi_\ast (X)$.其他结果包括关于艾伦伯格-麦克莱恩谱的定理和关于同调轨道何时保持弱等价性的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信