Configuration spaces of clusters as $E_d$-algebras

Pub Date : 2024-05-29 DOI:10.4310/hha.2024.v26.n1.a19
Florian Kranhold
{"title":"Configuration spaces of clusters as $E_d$-algebras","authors":"Florian Kranhold","doi":"10.4310/hha.2024.v26.n1.a19","DOIUrl":null,"url":null,"abstract":"It is a classical result that configuration spaces of labelled particles in $\\mathbb{R}^d$ are free $E_d$-algebras and that their $d$-fold bar construction is equivalent to the $d$-fold suspension of the labelling space. In this paper, we study a variation of these spaces, namely configuration spaces of labelled <i>clusters</i> of particles. These configuration spaces are again $E_d$-algebras, and we give geometric models for their iterated bar construction in two different ways: one establishes a description of these configuration spaces of clusters as <i>cellular</i> $E_1$-algebras, and the other one uses an additional <i>verticality</i> constraint. In the last section, we apply these results in order to calculate the stable homology of certain <i>vertical</i> configuration spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is a classical result that configuration spaces of labelled particles in $\mathbb{R}^d$ are free $E_d$-algebras and that their $d$-fold bar construction is equivalent to the $d$-fold suspension of the labelling space. In this paper, we study a variation of these spaces, namely configuration spaces of labelled clusters of particles. These configuration spaces are again $E_d$-algebras, and we give geometric models for their iterated bar construction in two different ways: one establishes a description of these configuration spaces of clusters as cellular $E_1$-algebras, and the other one uses an additional verticality constraint. In the last section, we apply these results in order to calculate the stable homology of certain vertical configuration spaces.
分享
查看原文
作为 $E_d$ 算法的簇配置空间
一个经典的结果是,$\mathbb{R}^d$中标记粒子的配置空间是自由的$E_d$-代数,其$d$-折叠条构造等价于标记空间的$d$-折叠悬浮。在本文中,我们将研究这些空间的一种变体,即贴标粒子簇的配置空间。这些配置空间也是 $E_d$-代数,我们用两种不同的方法给出了迭代条形构造的几何模型:一种是将这些粒子簇的配置空间描述为蜂窝状的 $E_1$-代数,另一种是使用额外的垂直性约束。在最后一节,我们应用这些结果来计算某些垂直配置空间的稳定同源性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信