{"title":"A linear linear lambda-calculus","authors":"Alejandro Díaz-Caro, Gilles Dowek","doi":"10.1017/s0960129524000197","DOIUrl":null,"url":null,"abstract":"We present a linearity theorem for a proof language of intuitionistic multiplicative additive linear logic, incorporating addition and scalar multiplication. The proofs in this language are linear in the algebraic sense. This work is part of a broader research program aiming to define a logic with a proof language that forms a quantum programming language.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"74 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000197","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a linearity theorem for a proof language of intuitionistic multiplicative additive linear logic, incorporating addition and scalar multiplication. The proofs in this language are linear in the algebraic sense. This work is part of a broader research program aiming to define a logic with a proof language that forms a quantum programming language.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.