Evolution of eigenvalue of the Wentzell–Laplace operator along the conformal mean curvature flow

Shahroud Azami
{"title":"Evolution of eigenvalue of the Wentzell–Laplace operator along the conformal mean curvature flow","authors":"Shahroud Azami","doi":"10.4310/arkiv.2024.v62.n1.a1","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate continuity, differentiability and monotonicity for the first nonzero eigenvalue of the Wentzell–Laplace operator along the conformal mean curvature flow on $n$-dimensional compact manifolds with boundary for $n \\geq 3$ under a boundary condition. In especial, we show that the first nonzero eigenvalue of the Wentzell–Laplace operator is monotonic under the conformal mean curvature flow and we find some monotonic quantities dependent to the first nonzero eigenvalue along the conformal mean curvature flow.","PeriodicalId":501438,"journal":{"name":"Arkiv för Matematik","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv för Matematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/arkiv.2024.v62.n1.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate continuity, differentiability and monotonicity for the first nonzero eigenvalue of the Wentzell–Laplace operator along the conformal mean curvature flow on $n$-dimensional compact manifolds with boundary for $n \geq 3$ under a boundary condition. In especial, we show that the first nonzero eigenvalue of the Wentzell–Laplace operator is monotonic under the conformal mean curvature flow and we find some monotonic quantities dependent to the first nonzero eigenvalue along the conformal mean curvature flow.
文采尔-拉普拉斯算子特征值沿共形平均曲率流的演变
在本文中,我们研究了在有边界条件的$n \geq 3$的$n$维紧凑流形上,温策尔-拉普拉斯算子沿共形平均曲率流的第一个非零特征值的连续性、可微性和单调性。特别是,我们证明了温策尔-拉普拉斯算子的第一个非零特征值在共形平均曲率流下是单调的,并发现了一些与沿共形平均曲率流的第一个非零特征值相关的单调量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信