Stable functors and cohomology theory in abelian categories

Shoutao Guo, Li Liang
{"title":"Stable functors and cohomology theory in abelian categories","authors":"Shoutao Guo, Li Liang","doi":"10.4310/arkiv.2024.v62.n1.a3","DOIUrl":null,"url":null,"abstract":"In this paper, we first introduce stable functors with respect to a pre-enveloping / pre-covering subcategory and investigate some of their properties. Using that we then introduce and study a relative complete cohomology theory in abelian categories. Some properties of the cohomology including vanishing are given. As applications, we give some characterizations of objects of finite homological dimensions including the flat dimension, cotorsion dimension, Gorenstein injective/flat dimension and projectively coresolved Gorenstein flat dimension.","PeriodicalId":501438,"journal":{"name":"Arkiv för Matematik","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv för Matematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/arkiv.2024.v62.n1.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we first introduce stable functors with respect to a pre-enveloping / pre-covering subcategory and investigate some of their properties. Using that we then introduce and study a relative complete cohomology theory in abelian categories. Some properties of the cohomology including vanishing are given. As applications, we give some characterizations of objects of finite homological dimensions including the flat dimension, cotorsion dimension, Gorenstein injective/flat dimension and projectively coresolved Gorenstein flat dimension.
无边际范畴中的稳定函数和同调理论
在本文中,我们首先介绍了关于前包络/前覆盖子类的稳定函子,并研究了它们的一些性质。以此为基础,我们引入并研究了无边际范畴中的相对完全同调理论。我们给出了包括消失在内的同调的一些性质。作为应用,我们给出了有限同调维数对象的一些特性,包括平面维数、扭转维数、戈伦斯坦注入/平面维数和投影核解戈伦斯坦平面维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信