Sylow intersections and Frobenius ratios

IF 0.5 4区 数学 Q3 MATHEMATICS
Wolfgang Knapp, Peter Schmid
{"title":"Sylow intersections and Frobenius ratios","authors":"Wolfgang Knapp,&nbsp;Peter Schmid","doi":"10.1007/s00013-024-01995-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a finite group and <i>p</i> a prime dividing its order |<i>G</i>|, with <i>p</i>-part <span>\\(|G|_p\\)</span>, and let <span>\\(G_p\\)</span> denote the set of all <i>p</i>-elements in <i>G</i>. A well known theorem of Frobenius tells us that <span>\\(f_p(G)=|G_p|/|G|_p\\)</span> is an integer. As <span>\\(G_p\\)</span> is the union of the Sylow <i>p</i>-subgroups of <i>G</i>, this <i>Frobenius ratio</i> <span>\\(f_p(G)\\)</span> evidently depends on the number <span>\\(s_p(G)=|\\textrm{Syl}_p(G)|\\)</span> of Sylow <i>p</i>-subgroups of <i>G</i> and on <i>Sylow intersections</i>. One knows that <span>\\(s_p(G)=1+kp\\)</span> and <span>\\(f_p(G)=1+\\ell (p-1)\\)</span> for nonnegative integers <span>\\(k, \\ell \\)</span>, and that <span>\\(f_p(G)&lt;s_p(G)\\)</span> unless <i>G</i> has a normal Sylow <i>p</i>-subgroup. In order to get lower bounds for <span>\\(f_p(G)\\)</span> we, study the permutation character <span>\\({\\pi }={\\pi }_p(G)\\)</span> of <i>G</i> in its transitive action on <span>\\(\\textrm{Syl}_p(G)\\)</span> via conjugation (Sylow character). We will get, in particular, that <span>\\(f_p(G)\\ge s_p(G)/r_p(G)\\)</span> where <span>\\(r_p(G)\\)</span> denotes the number of <i>P</i>-orbits on <span>\\(\\textrm{Syl}_p(G)\\)</span> for any fixed <span>\\(P\\in \\textrm{Syl}_p(G)\\)</span>. One can have <span>\\(\\ell \\ge k\\ge 1\\)</span> only when <i>P</i> is irredundant for <span>\\(G_p\\)</span>, that is, when <i>P</i> is not contained in the union of the <span>\\(Q\\ne P\\)</span> in <span>\\(\\textrm{Syl}_p(G)\\)</span> and so <span>\\(\\widehat{P}=\\bigcup _{Q\\ne P}(P\\cap Q)\\)</span> a proper subset of <i>P</i>. We prove that <span>\\(\\ell \\ge k\\)</span> when <span>\\(|\\widehat{P}|\\le |P|/p\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 1","pages":"9 - 17"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01995-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01995-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finite group and p a prime dividing its order |G|, with p-part \(|G|_p\), and let \(G_p\) denote the set of all p-elements in G. A well known theorem of Frobenius tells us that \(f_p(G)=|G_p|/|G|_p\) is an integer. As \(G_p\) is the union of the Sylow p-subgroups of G, this Frobenius ratio \(f_p(G)\) evidently depends on the number \(s_p(G)=|\textrm{Syl}_p(G)|\) of Sylow p-subgroups of G and on Sylow intersections. One knows that \(s_p(G)=1+kp\) and \(f_p(G)=1+\ell (p-1)\) for nonnegative integers \(k, \ell \), and that \(f_p(G)<s_p(G)\) unless G has a normal Sylow p-subgroup. In order to get lower bounds for \(f_p(G)\) we, study the permutation character \({\pi }={\pi }_p(G)\) of G in its transitive action on \(\textrm{Syl}_p(G)\) via conjugation (Sylow character). We will get, in particular, that \(f_p(G)\ge s_p(G)/r_p(G)\) where \(r_p(G)\) denotes the number of P-orbits on \(\textrm{Syl}_p(G)\) for any fixed \(P\in \textrm{Syl}_p(G)\). One can have \(\ell \ge k\ge 1\) only when P is irredundant for \(G_p\), that is, when P is not contained in the union of the \(Q\ne P\) in \(\textrm{Syl}_p(G)\) and so \(\widehat{P}=\bigcup _{Q\ne P}(P\cap Q)\) a proper subset of P. We prove that \(\ell \ge k\) when \(|\widehat{P}|\le |P|/p\).

Sylow 交集和 Frobenius 比率
让 G 是一个有限群,p 是除以其阶 |G| 的素数,p 部分为 \(|G|_p\),让 \(G_p\) 表示 G 中所有 p 元素的集合。众所周知的弗罗贝尼斯定理告诉我们 \(f_p(G)=|G_p|/|G|_p\)是一个整数。由于 \(G_p\) 是 G 的 Sylow p 子群的联合,这个 Frobenius 比率 \(f_p(G)\) 显然取决于 G 的 Sylow p 子群的数目 \(s_p(G)=|\textrm{Syl}_p(G)|\) 以及 Sylow 交集。我们知道对于非负整数 \(k, \ell \),\(s_p(G)=1+kp\)和\(f_p(G)=1+ell (p-1)\),并且\(f_p(G)<s_p(G)\)除非 G 有一个正常的 Sylow p 子群。为了得到 \(f_p(G)\)的下限,我们将研究 G 通过共轭(Sylow 特征)对 \(\textrm{Syl}_p(G)\)的传递作用中的 permutation character \({\pi }={\pi }_p(G)\)。特别是,我们会得到(f_p(G)ge s_p(G)/r_p(G)),其中(r_p(G))表示对于任意固定的(Pin \textrm{Syl}_p(G)),P-orbit 在 (textrm{Syl}_p(G))上的个数。只有当P对于\(G_p\)来说是无冗余的,也就是说当P不包含在\(\textrm{Syl}_p(G)\)中的\(Q\ne P\) 的联合中,并且因此\(\widehat{P}=\bigcup _{Q\ne P}(P\cap Q)\)是P的适当子集时,我们才能有\(ell \ge k\ge 1\) 。我们证明当\(|\widehat{P}|\le |P|/p\) 时\(ell \ge k\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信