Heat transfer and flow characteristics of a novel turbulator design in heat exchanger: Experimental and numerical analysis

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Ramazan Şener, M Eşref Demir
{"title":"Heat transfer and flow characteristics of a novel turbulator design in heat exchanger: Experimental and numerical analysis","authors":"Ramazan Şener, M Eşref Demir","doi":"10.1177/09576509241257727","DOIUrl":null,"url":null,"abstract":"Turbulators are used in heat exchangers to increase the contact surfaces of fluids and enhance heat transfer rates by promoting turbulence flow. This is particularly important in applications that require high productivity and capabilities. The use of turbulators can lead to maximum energy efficiency, resulting in high efficiency and lower costs. This investigation presents a comprehensive experimental and computational fluid dynamics (CFD) approach into the influence of turbulator-induced disturbances on heat transfer characteristics in a double pipe heat exchanger. In this study, two innovative turbulators (named TY and TZ) were designed to enhance the performance of heat exchangers. The turbulators are inserted into the inner pipe of the double pipe heat exchanger. According to the experimental and numerical results, compared to the plain pipe condition (without turbulator), it was observed that maximum temperature differences were reached with a 28% increase at velocity of 2.5 m/s with TY and 118% increase at velocity of 3 m/s with TZ. Nusselt numbers increased by 32% with TY and by 157.9% with TZ compared to the plain pipe condition. Therefore, TZ turbulator with a simple structure can significantly enhance the heat transfer performance of double-pipe heat exchangers, making it an ideal option for use in these exchangers.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509241257727","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Turbulators are used in heat exchangers to increase the contact surfaces of fluids and enhance heat transfer rates by promoting turbulence flow. This is particularly important in applications that require high productivity and capabilities. The use of turbulators can lead to maximum energy efficiency, resulting in high efficiency and lower costs. This investigation presents a comprehensive experimental and computational fluid dynamics (CFD) approach into the influence of turbulator-induced disturbances on heat transfer characteristics in a double pipe heat exchanger. In this study, two innovative turbulators (named TY and TZ) were designed to enhance the performance of heat exchangers. The turbulators are inserted into the inner pipe of the double pipe heat exchanger. According to the experimental and numerical results, compared to the plain pipe condition (without turbulator), it was observed that maximum temperature differences were reached with a 28% increase at velocity of 2.5 m/s with TY and 118% increase at velocity of 3 m/s with TZ. Nusselt numbers increased by 32% with TY and by 157.9% with TZ compared to the plain pipe condition. Therefore, TZ turbulator with a simple structure can significantly enhance the heat transfer performance of double-pipe heat exchangers, making it an ideal option for use in these exchangers.
热交换器中新型涡轮设计的传热和流动特性:实验和数值分析
涡轮机用于热交换器中,通过促进湍流来增加流体的接触面并提高传热率。这在要求高生产率和高能力的应用中尤为重要。使用湍流器可以最大限度地提高能效,从而实现高效率和低成本。本研究提出了一种全面的实验和计算流体动力学(CFD)方法,用于研究涡轮机引起的扰动对双管热交换器传热特性的影响。在这项研究中,设计了两种创新的涡轮(分别命名为 TY 和 TZ)来提高热交换器的性能。涡轮被插入双管热交换器的内管。根据实验和数值结果,与普通管道条件(不使用涡轮器)相比,TY 在流速为 2.5 米/秒时达到的最大温差增加了 28%,TZ 在流速为 3 米/秒时达到的最大温差增加了 118%。与普通管道相比,TY 的努塞尔特数增加了 32%,TZ 的努塞尔特数增加了 157.9%。因此,结构简单的 TZ 涡轮能显著提高双管热交换器的传热性能,使其成为这些热交换器的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信