Predicting the Brazilian Stock Market with Sentiment Analysis, Technical Indicators and Stock Prices: A Deep Learning Approach

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Arthur Emanuel de Oliveira Carosia, Ana Estela Antunes da Silva, Guilherme Palermo Coelho
{"title":"Predicting the Brazilian Stock Market with Sentiment Analysis, Technical Indicators and Stock Prices: A Deep Learning Approach","authors":"Arthur Emanuel de Oliveira Carosia, Ana Estela Antunes da Silva, Guilherme Palermo Coelho","doi":"10.1007/s10614-024-10636-y","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in Machine Learning and, especially, Deep Learning, have led to applications of these areas in different fields of knowledge, with great emphasis on stock market prediction. There are two main approaches in the literature to predict future prices in the stock market: (1) considering historical stock prices; and (2) considering news or social media documents. Despite the recent efforts to combine these two approaches, the literature lacks works in which both strategies are performed with Deep Learning, which has led to state-of-art results in many regression and classification tasks. To overcome these limitations, in this work we proposed a new Deep Learning-based approach to predict the Brazilian stock market combining the use of historical stock prices, financial technical indicators, and financial news. The experiments were performed considering the period from 2010 to 2019 with the Ibovespa index and the historical prices of the following Brazilian companies: Banco do Brasil, Itaú, Ambev, and Gerdau, which have significant contribution to the Ibovespa index. Our results show that the combination of stock prices, technical indicators and news improves the stock market prediction considering both the prediction error and return-of-investment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"83 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10636-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in Machine Learning and, especially, Deep Learning, have led to applications of these areas in different fields of knowledge, with great emphasis on stock market prediction. There are two main approaches in the literature to predict future prices in the stock market: (1) considering historical stock prices; and (2) considering news or social media documents. Despite the recent efforts to combine these two approaches, the literature lacks works in which both strategies are performed with Deep Learning, which has led to state-of-art results in many regression and classification tasks. To overcome these limitations, in this work we proposed a new Deep Learning-based approach to predict the Brazilian stock market combining the use of historical stock prices, financial technical indicators, and financial news. The experiments were performed considering the period from 2010 to 2019 with the Ibovespa index and the historical prices of the following Brazilian companies: Banco do Brasil, Itaú, Ambev, and Gerdau, which have significant contribution to the Ibovespa index. Our results show that the combination of stock prices, technical indicators and news improves the stock market prediction considering both the prediction error and return-of-investment.

Abstract Image

利用情绪分析、技术指标和股票价格预测巴西股市:深度学习方法
机器学习,尤其是深度学习的最新进展促使这些领域在不同知识领域得到应用,其中股票市场预测是重点。文献中有两种预测股市未来价格的主要方法:(1) 考虑历史股价;(2) 考虑新闻或社交媒体文件。尽管近来人们努力将这两种方法结合起来,但文献中缺乏将这两种策略与深度学习结合起来的作品,而深度学习已经在许多回归和分类任务中取得了最先进的成果。为了克服这些局限性,在这项工作中,我们提出了一种基于深度学习的新方法,结合使用历史股票价格、金融技术指标和金融新闻来预测巴西股市。在 2010 年至 2019 年期间,我们利用 IBOVESPA 指数和以下巴西公司的历史价格进行了实验:巴西银行、伊塔乌、Ambev 和 Gerdau,这些公司对 IBOVESPA 指数有重大贡献。我们的研究结果表明,考虑到预测误差和投资回报,股票价格、技术指标和新闻的结合提高了对股市的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信