Lattice QCD calculation of the pion distribution amplitude with domain wall fermions at physical pion mass

Ethan Baker, Dennis Bollweg, Peter Boyle, Ian Cloët, Xiang Gao, Swagato Mukherjee, Peter Petreczky, Rui Zhang, Yong Zhao
{"title":"Lattice QCD calculation of the pion distribution amplitude with domain wall fermions at physical pion mass","authors":"Ethan Baker, Dennis Bollweg, Peter Boyle, Ian Cloët, Xiang Gao, Swagato Mukherjee, Peter Petreczky, Rui Zhang, Yong Zhao","doi":"arxiv-2405.20120","DOIUrl":null,"url":null,"abstract":"We present a direct lattice QCD calculation of the $x$-dependence of the pion\ndistribution amplitude (DA), which is performed using the quasi-DA in large\nmomentum effective theory on a domain-wall fermion ensemble at physical quark\nmasses and spacing $a\\approx 0.084$ fm. The bare quais-DA matrix elements are\nrenormalized in the hybrid scheme and matched to $\\overline{\\rm MS}$ with a\nsubtraction of the leading renormalon in the Wilson-line mass. For the first\ntime, we include threshold resummation in the perturbative matching onto the\nlight-cone DA, which resums the large logarithms in the soft gluon limit at\nnext-to-next-to-leading log. The resummed results show controlled\nscale-variation uncertainty within the range of momentum fraction\n$x\\in[0.25,0.75]$ at the largest pion momentum $P_z\\approx 1.85$~GeV. In\naddition, we apply the same analysis to quasi-DAs from a\nhighly-improved-staggered-quark ensemble at physical pion mass and $a=0.076$\nfm. By comparison we find with $2\\sigma$ confidence level that the DA obtained\nfrom chiral fermions is flatter and lower near $x=0.5$.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a direct lattice QCD calculation of the $x$-dependence of the pion distribution amplitude (DA), which is performed using the quasi-DA in large momentum effective theory on a domain-wall fermion ensemble at physical quark masses and spacing $a\approx 0.084$ fm. The bare quais-DA matrix elements are renormalized in the hybrid scheme and matched to $\overline{\rm MS}$ with a subtraction of the leading renormalon in the Wilson-line mass. For the first time, we include threshold resummation in the perturbative matching onto the light-cone DA, which resums the large logarithms in the soft gluon limit at next-to-next-to-leading log. The resummed results show controlled scale-variation uncertainty within the range of momentum fraction $x\in[0.25,0.75]$ at the largest pion momentum $P_z\approx 1.85$~GeV. In addition, we apply the same analysis to quasi-DAs from a highly-improved-staggered-quark ensemble at physical pion mass and $a=0.076$ fm. By comparison we find with $2\sigma$ confidence level that the DA obtained from chiral fermions is flatter and lower near $x=0.5$.
以物理先驱质量计算具有畴壁费米子的先驱分布振幅的格面 QCD 计算
我们介绍了一种对先驱分布振幅(DA)的x依赖性的直接晶格QCD计算,该计算是在物理四质量和间距为$a\approx 0.084$ fm的域壁费米子集合上使用大动量有效理论中的准DA进行的。在混合方案中,裸quais-DA矩阵元素被正则化,并与$\overline{rm MS}$匹配,同时减去了威尔逊线质量中的前导正则子。我们首次在与光锥DA的微扰匹配中加入了阈值求和,在软胶子极限中求和了邻近到邻近到前导对数的大对数。在最大先驱动量$P_z(约1.85$~GeV)时,重和结果显示了动量分数$x在[0.25,0.75]$范围内的可控尺度变化不确定性。此外,我们将同样的分析应用于物理先驱质量和$a=0.076$fm时来自高度改进的交错夸克集合的准DAs。通过比较,我们发现手性费米子得到的DA在$x=0.5$附近更平坦、更低,置信度为$2\sigma$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信