{"title":"Sequential metamodel‐based approaches to level‐set estimation under heteroscedasticity","authors":"Yutong Zhang, Xi Chen","doi":"10.1002/sam.11697","DOIUrl":null,"url":null,"abstract":"This paper proposes two sequential metamodel‐based methods for level‐set estimation (LSE) that leverage the uniform bound built on stochastic kriging: predictive variance reduction (PVR) and expected classification improvement (ECI). We show that PVR and ECI possess desirable theoretical performance guarantees and provide closed‐form expressions for their respective sequential sampling criteria to seek the next design point for performing simulation runs, allowing computationally efficient one‐iteration look‐ahead updates. To enhance understanding, we reveal the connection between PVR and ECI's sequential sampling criteria. Additionally, we propose integrating a budget allocation feature with PVR and ECI, which improves computational efficiency and potentially enhances robustness to the impacts of heteroscedasticity. Numerical studies demonstrate the superior performance of the proposed methods compared to state‐of‐the‐art benchmarking approaches when given a fixed simulation budget, highlighting their effectiveness in addressing LSE problems.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"88 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11697","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes two sequential metamodel‐based methods for level‐set estimation (LSE) that leverage the uniform bound built on stochastic kriging: predictive variance reduction (PVR) and expected classification improvement (ECI). We show that PVR and ECI possess desirable theoretical performance guarantees and provide closed‐form expressions for their respective sequential sampling criteria to seek the next design point for performing simulation runs, allowing computationally efficient one‐iteration look‐ahead updates. To enhance understanding, we reveal the connection between PVR and ECI's sequential sampling criteria. Additionally, we propose integrating a budget allocation feature with PVR and ECI, which improves computational efficiency and potentially enhances robustness to the impacts of heteroscedasticity. Numerical studies demonstrate the superior performance of the proposed methods compared to state‐of‐the‐art benchmarking approaches when given a fixed simulation budget, highlighting their effectiveness in addressing LSE problems.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.