Chiara Contoli, Lorenzo Calisti, Giacomo Di Fabrizio, Nicholas Kania, Alessandro Bogliolo, Emanuele Lattanzi
{"title":"A power-aware vision-based virtual sensor for real-time edge computing","authors":"Chiara Contoli, Lorenzo Calisti, Giacomo Di Fabrizio, Nicholas Kania, Alessandro Bogliolo, Emanuele Lattanzi","doi":"10.1007/s11554-024-01482-0","DOIUrl":null,"url":null,"abstract":"<p>Graphics processing units and tensor processing units coupled with tiny machine learning models deployed on edge devices are revolutionizing computer vision and real-time tracking systems. However, edge devices pose tight resource and power constraints. This paper proposes a real-time vision-based virtual sensors paradigm to provide power-aware multi-object tracking at the edge while preserving tracking accuracy and enhancing privacy. We thoroughly describe our proposed system architecture, focusing on the Dynamic Inference Power Manager (DIPM). Our proposed DIPM is based on an adaptive frame rate to provide energy savings. We implement and deploy the virtual sensor and the DIPM on the NVIDIA Jetson Nano edge platform to prove the effectiveness and efficiency of the proposed solution. The results of extensive experiments demonstrate that the proposed virtual sensor can achieve a reduction in energy consumption of about 36% in videos with relatively low dynamicity and about 21% in more dynamic video content while simultaneously maintaining tracking accuracy within a range of less than 1.2%.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01482-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graphics processing units and tensor processing units coupled with tiny machine learning models deployed on edge devices are revolutionizing computer vision and real-time tracking systems. However, edge devices pose tight resource and power constraints. This paper proposes a real-time vision-based virtual sensors paradigm to provide power-aware multi-object tracking at the edge while preserving tracking accuracy and enhancing privacy. We thoroughly describe our proposed system architecture, focusing on the Dynamic Inference Power Manager (DIPM). Our proposed DIPM is based on an adaptive frame rate to provide energy savings. We implement and deploy the virtual sensor and the DIPM on the NVIDIA Jetson Nano edge platform to prove the effectiveness and efficiency of the proposed solution. The results of extensive experiments demonstrate that the proposed virtual sensor can achieve a reduction in energy consumption of about 36% in videos with relatively low dynamicity and about 21% in more dynamic video content while simultaneously maintaining tracking accuracy within a range of less than 1.2%.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.