Convex hulls of surfaces in fourspace

IF 0.7 2区 数学 Q2 MATHEMATICS
Chiara Meroni, Kristian Ranestad, Rainer Sinn
{"title":"Convex hulls of surfaces in fourspace","authors":"Chiara Meroni, Kristian Ranestad, Rainer Sinn","doi":"10.1007/s13348-024-00444-w","DOIUrl":null,"url":null,"abstract":"<p>This is a case study of the algebraic boundary of convex hulls of varieties. We focus on surfaces in fourspace to showcase new geometric phenomena that neither curves nor hypersurfaces exhibit. Our method is a detailed analysis of a general purpose formula by Ranestad and Sturmfels in the case of smooth real algebraic surfaces of low degree (that are rational over the complex numbers). We study both the complex and the real features of the algebraic boundary of Veronese and Del Pezzo surfaces. The main difficulties and the possible approaches to the case of general surfaces are discussed for and complemented by the example of Bordiga surfaces.</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-024-00444-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This is a case study of the algebraic boundary of convex hulls of varieties. We focus on surfaces in fourspace to showcase new geometric phenomena that neither curves nor hypersurfaces exhibit. Our method is a detailed analysis of a general purpose formula by Ranestad and Sturmfels in the case of smooth real algebraic surfaces of low degree (that are rational over the complex numbers). We study both the complex and the real features of the algebraic boundary of Veronese and Del Pezzo surfaces. The main difficulties and the possible approaches to the case of general surfaces are discussed for and complemented by the example of Bordiga surfaces.

Abstract Image

四空间曲面的凸壳
这是一个关于凸壳代数边界的案例研究。我们将重点放在四空间曲面上,以展示曲线和超曲面都没有表现出的新几何现象。我们的方法是详细分析 Ranestad 和 Sturmfels 在低度光滑实代数曲面(复数有理曲面)情况下提出的通用公式。我们研究了 Veronese 和 Del Pezzo 曲面代数边界的复数和实数特征。我们以 Bordiga 曲面为例,讨论了一般曲面的主要困难和可能方法,并对其进行了补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信