Long-term inflow forecast using meteorological data based on long short-term memory neural networks

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hongye Zhao, Shengli Liao, Yitong Song, Zhou Fang, Xiangyu Ma, BinBin Zhou
{"title":"Long-term inflow forecast using meteorological data based on long short-term memory neural networks","authors":"Hongye Zhao, Shengli Liao, Yitong Song, Zhou Fang, Xiangyu Ma, BinBin Zhou","doi":"10.2166/hydro.2024.196","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&amp;Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00196gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&amp;Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&amp;Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00196gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&amp;Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Long-term inflow forecasting is extremely important for reasonable dispatch schedules of hydropower stations and efficient utilization plans of water resources. In this paper, a novel forecast framework, meteorological data long short-term memory neural network (M-LSTM), which uses the meteorological dataset as input and adopts LSTM, is proposed for monthly inflow forecasting. First, the meteorological dataset, which provides more effective information for runoff prediction, is obtained by inverse distance weighting (IDW). Second, the maximal information coefficient (MIC) can adequately measure the degree of correlation between meteorological data and inflow; therefore, the MIC can distinguish key attributes from massive meteorological data and further reduce the computational burden. Last, LSTM is chosen as the prediction method due to its powerful nonlinear predictive capability, which can couple historical inflow records and meteorological data to forecast inflow. The Xiaowan hydropower station is selected as the case study. To evaluate the effectiveness of the M-LSTM for runoff prediction, several methods including LSTM, meteorological data backpropagation neural network (M-BPNN), meteorological data support vector regression (M-SVR) are employed for comparison with the M-LSTM and six evaluation criteria are used to compare its performance. Results revealed that M-LSTM outperforms other test methods in developing the long-term prediction method.</p>","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.196","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image
View largeDownload slide
Abstract Image
View largeDownload slide
Close modal

Long-term inflow forecasting is extremely important for reasonable dispatch schedules of hydropower stations and efficient utilization plans of water resources. In this paper, a novel forecast framework, meteorological data long short-term memory neural network (M-LSTM), which uses the meteorological dataset as input and adopts LSTM, is proposed for monthly inflow forecasting. First, the meteorological dataset, which provides more effective information for runoff prediction, is obtained by inverse distance weighting (IDW). Second, the maximal information coefficient (MIC) can adequately measure the degree of correlation between meteorological data and inflow; therefore, the MIC can distinguish key attributes from massive meteorological data and further reduce the computational burden. Last, LSTM is chosen as the prediction method due to its powerful nonlinear predictive capability, which can couple historical inflow records and meteorological data to forecast inflow. The Xiaowan hydropower station is selected as the case study. To evaluate the effectiveness of the M-LSTM for runoff prediction, several methods including LSTM, meteorological data backpropagation neural network (M-BPNN), meteorological data support vector regression (M-SVR) are employed for comparison with the M-LSTM and six evaluation criteria are used to compare its performance. Results revealed that M-LSTM outperforms other test methods in developing the long-term prediction method.

基于长短期记忆神经网络的气象数据长期流入量预报
查看 largeDownload 幻灯片查看 largeDownload 幻灯片 关闭模态长期入库流量预报对于水电站的合理调度和水资源的高效利用计划极为重要。本文提出了一种以气象数据集为输入、采用 LSTM 的新型预报框架--气象数据长短期记忆神经网络(M-LSTM),用于月度流入量预报。首先,通过反距离加权(IDW)获得为径流预报提供更有效信息的气象数据集。其次,最大信息系数(MIC)可以充分衡量气象数据与流入量之间的相关程度,因此,MIC 可以从海量气象数据中区分出关键属性,进一步减轻计算负担。最后,由于 LSTM 具有强大的非线性预测能力,可以将历史流入量记录和气象数据结合起来预测流入量,因此选择 LSTM 作为预测方法。案例研究选择了小湾水电站。为了评估 M-LSTM 在径流预测中的有效性,采用了包括 LSTM、气象数据反向传播神经网络 (M-BPNN)、气象数据支持向量回归 (M-SVR) 在内的多种方法与 M-LSTM 进行比较,并使用六个评价标准对其性能进行比较。结果表明,在开发长期预测方法方面,M-LSTM 优于其他测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信