Hermitian Preconditioning for a Class of Non-Hermitian Linear Systems

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nicole Spillane
{"title":"Hermitian Preconditioning for a Class of Non-Hermitian Linear Systems","authors":"Nicole Spillane","doi":"10.1137/23m1559026","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1903-A1922, June 2024. <br/> Abstract. This work considers the convergence of GMRES for nonsingular problems. GMRES is interpreted as the generalized conjugate residual method which allows for simple proofs of the convergence estimates. Preconditioning and weighted norms within GMRES are considered. The objective is to provide a way of choosing the preconditioner and GMRES norm that ensures fast convergence. The main focus of the article is on Hermitian preconditioning (even for non-Hermitian problems). It is proposed to choose a Hermitian preconditioner [math] and to apply GMRES in the inner product induced by [math]. If, moreover, the problem matrix [math] is positive definite, then a new convergence bound is proved that depends only on how well [math] preconditions the Hermitian part of [math], and on how non-Hermitian [math] is. In particular, if a scalable preconditioner is known for the Hermitian part of [math], then the proposed method is also scalable. This result is illustrated numerically.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1559026","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1903-A1922, June 2024.
Abstract. This work considers the convergence of GMRES for nonsingular problems. GMRES is interpreted as the generalized conjugate residual method which allows for simple proofs of the convergence estimates. Preconditioning and weighted norms within GMRES are considered. The objective is to provide a way of choosing the preconditioner and GMRES norm that ensures fast convergence. The main focus of the article is on Hermitian preconditioning (even for non-Hermitian problems). It is proposed to choose a Hermitian preconditioner [math] and to apply GMRES in the inner product induced by [math]. If, moreover, the problem matrix [math] is positive definite, then a new convergence bound is proved that depends only on how well [math] preconditions the Hermitian part of [math], and on how non-Hermitian [math] is. In particular, if a scalable preconditioner is known for the Hermitian part of [math], then the proposed method is also scalable. This result is illustrated numerically.
一类非赫米提线性系统的赫米提预处理
SIAM 科学计算期刊》,第 46 卷第 3 期,第 A1903-A1922 页,2024 年 6 月。 摘要。本研究考虑了非奇异问题的 GMRES 收敛性。GMRES 被解释为广义共轭残差法,可以简单证明收敛估计值。研究还考虑了 GMRES 中的预处理和加权规范。目的是提供一种选择预处理和 GMRES 准则的方法,以确保快速收敛。文章的重点是赫米蒂预处理(即使是非赫米蒂问题)。建议选择赫米先决条件器[math],并在[math]诱导的内积中应用 GMRES。此外,如果问题矩阵 [math] 是正定的,那么就可以证明一个新的收敛边界,它只取决于 [math] 对 [math] 的赫米特部分的预处理效果,以及 [math] 的非赫米特程度。特别是,如果已知[math]的赫米特部分有可扩展的预处理,那么所提出的方法也是可扩展的。我们将用数值来说明这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信