{"title":"Beyond authorship: Analyzing contributions in PLOS ONE and the challenges of appropriate attribution","authors":"Abdelghani Maddi, Jaime A. Teixeira da Silva","doi":"10.2478/jdis-2024-0015","DOIUrl":null,"url":null,"abstract":"Purpose This study aims to evaluate the accuracy of authorship attributions in scientific publications, focusing on the fairness and precision of individual contributions within academic works. Design/methodology/approach The study analyzes 81,823 publications from the journal <jats:italic>PLOS ONE</jats:italic>, covering the period from January 2018 to June 2023. It examines the authorship attributions within these publications to try and determine the prevalence of inappropriate authorship. It also investigates the demographic and professional profiles of affected authors, exploring trends and potential factors contributing to inaccuracies in authorship. Findings Surprisingly, 9.14% of articles feature at least one author with inappropriate authorship, affecting over 14,000 individuals (2.56% of the sample). Inappropriate authorship is more concentrated in Asia, Africa, and specific European countries like Italy. Established researchers with significant publication records and those affiliated with companies or nonprofits show higher instances of potential monetary authorship. Research limitations Our findings are based on contributions as declared by the authors, which implies a degree of trust in their transparency. However, this reliance on self-reporting may introduce biases or inaccuracies into the dataset. Further research could employ additional verification methods to enhance the reliability of the findings. Practical implications These findings have significant implications for journal publishers, highlighting the necessity for robust control mechanisms to ensure the integrity of authorship attributions. Moreover, researchers must exercise discernment in determining when to acknowledge a contributor and when to include them in the author list. Addressing these issues is crucial for maintaining the credibility and fairness of academic publications. Originality/value This study contributes to an understanding of critical issues within academic authorship, shedding light on the prevalence and impact of inappropriate authorship attributions. By calling for a nuanced approach to ensure accurate credit is given where it is due, the study underscores the importance of upholding ethical standards in scholarly publishing.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"75 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Science","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.2478/jdis-2024-0015","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose This study aims to evaluate the accuracy of authorship attributions in scientific publications, focusing on the fairness and precision of individual contributions within academic works. Design/methodology/approach The study analyzes 81,823 publications from the journal PLOS ONE, covering the period from January 2018 to June 2023. It examines the authorship attributions within these publications to try and determine the prevalence of inappropriate authorship. It also investigates the demographic and professional profiles of affected authors, exploring trends and potential factors contributing to inaccuracies in authorship. Findings Surprisingly, 9.14% of articles feature at least one author with inappropriate authorship, affecting over 14,000 individuals (2.56% of the sample). Inappropriate authorship is more concentrated in Asia, Africa, and specific European countries like Italy. Established researchers with significant publication records and those affiliated with companies or nonprofits show higher instances of potential monetary authorship. Research limitations Our findings are based on contributions as declared by the authors, which implies a degree of trust in their transparency. However, this reliance on self-reporting may introduce biases or inaccuracies into the dataset. Further research could employ additional verification methods to enhance the reliability of the findings. Practical implications These findings have significant implications for journal publishers, highlighting the necessity for robust control mechanisms to ensure the integrity of authorship attributions. Moreover, researchers must exercise discernment in determining when to acknowledge a contributor and when to include them in the author list. Addressing these issues is crucial for maintaining the credibility and fairness of academic publications. Originality/value This study contributes to an understanding of critical issues within academic authorship, shedding light on the prevalence and impact of inappropriate authorship attributions. By calling for a nuanced approach to ensure accurate credit is given where it is due, the study underscores the importance of upholding ethical standards in scholarly publishing.
期刊介绍:
JDIS devotes itself to the study and application of the theories, methods, techniques, services, infrastructural facilities using big data to support knowledge discovery for decision & policy making. The basic emphasis is big data-based, analytics centered, knowledge discovery driven, and decision making supporting. The special effort is on the knowledge discovery to detect and predict structures, trends, behaviors, relations, evolutions and disruptions in research, innovation, business, politics, security, media and communications, and social development, where the big data may include metadata or full content data, text or non-textural data, structured or non-structural data, domain specific or cross-domain data, and dynamic or interactive data.
The main areas of interest are:
(1) New theories, methods, and techniques of big data based data mining, knowledge discovery, and informatics, including but not limited to scientometrics, communication analysis, social network analysis, tech & industry analysis, competitive intelligence, knowledge mapping, evidence based policy analysis, and predictive analysis.
(2) New methods, architectures, and facilities to develop or improve knowledge infrastructure capable to support knowledge organization and sophisticated analytics, including but not limited to ontology construction, knowledge organization, semantic linked data, knowledge integration and fusion, semantic retrieval, domain specific knowledge infrastructure, and semantic sciences.
(3) New mechanisms, methods, and tools to embed knowledge analytics and knowledge discovery into actual operation, service, or managerial processes, including but not limited to knowledge assisted scientific discovery, data mining driven intelligent workflows in learning, communications, and management.
Specific topic areas may include:
Knowledge organization
Knowledge discovery and data mining
Knowledge integration and fusion
Semantic Web metrics
Scientometrics
Analytic and diagnostic informetrics
Competitive intelligence
Predictive analysis
Social network analysis and metrics
Semantic and interactively analytic retrieval
Evidence-based policy analysis
Intelligent knowledge production
Knowledge-driven workflow management and decision-making
Knowledge-driven collaboration and its management
Domain knowledge infrastructure with knowledge fusion and analytics
Development of data and information services