Guangwei Lin, Yi Zhang, Enjian Cai, Min Luo, Jing Guo
{"title":"A Bayesian Structural Modal Updating Method Based on Sparse Grid and Ensemble Kalman Filter","authors":"Guangwei Lin, Yi Zhang, Enjian Cai, Min Luo, Jing Guo","doi":"10.1155/2024/5570667","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study presents a sparse grid interpolation and ensemble Kalman filter (EnKF)-based Markov Chain Monte Carlo (MCMC) method (SG-EnMCMC). Initiating with the formulation of a recursive equation for the state space vector, derived from the structural dynamic equation, this study adopts a dimensionality reduction strategy. This approach involves a separation of physical parameters and the state space vector. The acquisition of physical parameters is accomplished through sampling, utilizing sample moments to substitute population moments, thereby mitigating the need for computationally high-dimensional covariance matrix calculations. To further streamline the recursive equation of the state space vector, a sparse grid method is employed for interpolation. This step simplifies the process while ensuring superior accuracy compared to the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). Subsequent to this, acceptance rates and the final parameter posterior distribution within the MCMC framework are derived. The efficiency of the proposed method is assessed through validation in two shaking table experiments.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5570667","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5570667","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a sparse grid interpolation and ensemble Kalman filter (EnKF)-based Markov Chain Monte Carlo (MCMC) method (SG-EnMCMC). Initiating with the formulation of a recursive equation for the state space vector, derived from the structural dynamic equation, this study adopts a dimensionality reduction strategy. This approach involves a separation of physical parameters and the state space vector. The acquisition of physical parameters is accomplished through sampling, utilizing sample moments to substitute population moments, thereby mitigating the need for computationally high-dimensional covariance matrix calculations. To further streamline the recursive equation of the state space vector, a sparse grid method is employed for interpolation. This step simplifies the process while ensuring superior accuracy compared to the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). Subsequent to this, acceptance rates and the final parameter posterior distribution within the MCMC framework are derived. The efficiency of the proposed method is assessed through validation in two shaking table experiments.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.