Kexing Lyu, Bingjie Tang, Bixue Huang, Zhenglin Xu, Tesi Liu, Ruihua Fang, Yun Li, Yi Chen, Lin Chen, Minjuan Zhang, Lifan Chen, Wenbin Lei
{"title":"Exosomal circPVT1 promotes angiogenesis in laryngeal cancer by activating the Rap1b-VEGFR2 signaling pathway.","authors":"Kexing Lyu, Bingjie Tang, Bixue Huang, Zhenglin Xu, Tesi Liu, Ruihua Fang, Yun Li, Yi Chen, Lin Chen, Minjuan Zhang, Lifan Chen, Wenbin Lei","doi":"10.1093/carcin/bgae030","DOIUrl":null,"url":null,"abstract":"<p><p>Laryngeal cancer (LC) is the second most common head and neck cancer and has a decreasing 5-year survival rate worldwide. Circular RNAs (circRNAs) regulate cancer development in diverse ways based on their distinct biogenesis mechanisms and expansive regulatory roles. However, currently, there is little research on how exosomal circRNAs are involved in the development of LC. Here, we demonstrated that circPVT1, a circRNA derived from the well-studied long noncoding RNA PVT1, is correlated with disease progression in LC and promotes angiogenesis both in vivo and in vitro. Mechanistically, circPVT1 is loaded into LC cell-secreted exosomes and taken up by vascular epithelium cells. By sponging miR-30c-5p, exosomal circPVT1 promotes Rap1b expression, which dramatically enhances vascular endothelial growth factor receptor 2 and the phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, ultimately resulting in the induction of angiogenesis. Furthermore, our xenograft models demonstrated that the combination of short hairpin RNA-circPVT1 and cetuximab showed high efficacy in inhibiting tumor growth and angiogenesis. Collectively, these findings uncover a novel mechanism of exosomal circRNA-mediated angiogenesis modulation and provide a preclinical rationale for testing this analogous combination in patients with LC.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgae030","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Laryngeal cancer (LC) is the second most common head and neck cancer and has a decreasing 5-year survival rate worldwide. Circular RNAs (circRNAs) regulate cancer development in diverse ways based on their distinct biogenesis mechanisms and expansive regulatory roles. However, currently, there is little research on how exosomal circRNAs are involved in the development of LC. Here, we demonstrated that circPVT1, a circRNA derived from the well-studied long noncoding RNA PVT1, is correlated with disease progression in LC and promotes angiogenesis both in vivo and in vitro. Mechanistically, circPVT1 is loaded into LC cell-secreted exosomes and taken up by vascular epithelium cells. By sponging miR-30c-5p, exosomal circPVT1 promotes Rap1b expression, which dramatically enhances vascular endothelial growth factor receptor 2 and the phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, ultimately resulting in the induction of angiogenesis. Furthermore, our xenograft models demonstrated that the combination of short hairpin RNA-circPVT1 and cetuximab showed high efficacy in inhibiting tumor growth and angiogenesis. Collectively, these findings uncover a novel mechanism of exosomal circRNA-mediated angiogenesis modulation and provide a preclinical rationale for testing this analogous combination in patients with LC.
期刊介绍:
Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).