CIP-stabilized virtual elements for diffusion-convection-reaction problems

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
L Beirão da Veiga, C Lovadina, M Trezzi
{"title":"CIP-stabilized virtual elements for diffusion-convection-reaction problems","authors":"L Beirão da Veiga, C Lovadina, M Trezzi","doi":"10.1093/imanum/drae020","DOIUrl":null,"url":null,"abstract":"The Virtual Element Method (VEM) for diffusion-convection-reaction problems is considered. In order to design a quasi-robust scheme also in the convection-dominated regime, a Continuous Interior Penalty approach is employed. Due to the presence of polynomial projection operators, typical of the VEM, the stability and the error analysis requires particular care—especially in treating the advective term. Some numerical tests are presented to support the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"32 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Virtual Element Method (VEM) for diffusion-convection-reaction problems is considered. In order to design a quasi-robust scheme also in the convection-dominated regime, a Continuous Interior Penalty approach is employed. Due to the presence of polynomial projection operators, typical of the VEM, the stability and the error analysis requires particular care—especially in treating the advective term. Some numerical tests are presented to support the theoretical results.
扩散-对流-反应问题的 CIP 稳定虚拟元素
研究考虑了针对扩散-对流-反应问题的虚拟元素法(VEM)。为了在对流主导机制中也能设计出准稳健的方案,采用了连续内部惩罚法。由于存在多项式投影算子(VEM 的典型特征),稳定性和误差分析需要特别小心,尤其是在处理平流项时。本文介绍了一些数值测试,以支持理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信