The grapheme-valued Wright–Fisher diffusion with mutation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andreas Greven , Frank den Hollander , Anton Klimovsky , Anita Winter
{"title":"The grapheme-valued Wright–Fisher diffusion with mutation","authors":"Andreas Greven ,&nbsp;Frank den Hollander ,&nbsp;Anton Klimovsky ,&nbsp;Anita Winter","doi":"10.1016/j.tpb.2024.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>In Athreya et al. (2021), models from population genetics were used to define stochastic dynamics in the space of graphons arising as continuum limits of dense graphs. In the present paper we exhibit an example of a simple neutral population genetics model for which this dynamics is a Markovian diffusion that can be characterized as the solution of a martingale problem. In particular, we consider a Markov chain in the space of finite graphs that resembles a Moran model with resampling and mutation. We encode the finite graphs as graphemes, which can be represented as a triple consisting of a vertex set (or more generally, a topological space), an adjacency matrix, and a sampling (Borel) measure. We equip the space of graphons with convergence of sample subgraph densities and show that the grapheme-valued Markov chain converges to a grapheme-valued diffusion as the number of vertices goes to infinity. We show that the grapheme-valued diffusion has a stationary distribution that is linked to the Griffiths–Engen–McCloskey (GEM) distribution. In a companion paper (Greven et al. 2023), we build up a general theory for obtaining grapheme-valued diffusions via genealogies of models in population genetics.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000406/pdfft?md5=f9d4f022450b2756df0c49347ac9761c&pid=1-s2.0-S0040580924000406-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000406","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In Athreya et al. (2021), models from population genetics were used to define stochastic dynamics in the space of graphons arising as continuum limits of dense graphs. In the present paper we exhibit an example of a simple neutral population genetics model for which this dynamics is a Markovian diffusion that can be characterized as the solution of a martingale problem. In particular, we consider a Markov chain in the space of finite graphs that resembles a Moran model with resampling and mutation. We encode the finite graphs as graphemes, which can be represented as a triple consisting of a vertex set (or more generally, a topological space), an adjacency matrix, and a sampling (Borel) measure. We equip the space of graphons with convergence of sample subgraph densities and show that the grapheme-valued Markov chain converges to a grapheme-valued diffusion as the number of vertices goes to infinity. We show that the grapheme-valued diffusion has a stationary distribution that is linked to the Griffiths–Engen–McCloskey (GEM) distribution. In a companion paper (Greven et al. 2023), we build up a general theory for obtaining grapheme-valued diffusions via genealogies of models in population genetics.

有突变的粒度值赖特-费舍扩散。
在 Athreya 等人(2021 年)的论文中,人口遗传学模型被用来定义作为密集图的连续极限而产生的图子空间中的随机动力学。在本文中,我们展示了一个简单的中性种群遗传学模型的例子,该模型的动力学是马尔可夫扩散,可以表征为马丁格尔问题的解。我们特别考虑了有限图空间中的马尔可夫链,它类似于带有重采样和突变的莫兰模型。我们将有限图编码为图元,图元可以表示为由顶点集(或更广义地说,拓扑空间)、邻接矩阵和采样(Borel)度量组成的三元组。我们为图元空间配备了采样子图密度的收敛性,并证明当顶点数达到无穷大时,图元值马尔科夫链收敛于图元值扩散。我们还证明了该图元值扩散具有与格里菲斯-恩根-麦克洛斯基(GEM)分布相关联的静态分布。在另一篇论文(Greven et al. 2023)中,我们通过群体遗传学中模型的谱系,建立了一种获得图元值扩散的一般理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信