To compare the impact of four effervescent vitamin tablets on the surface roughness, microhardness, and color of human enamel and contemporary composite resins.
Sixty enamel and a total of 240 anterior (Gradia Direct Anterior), posterior (Gradia Direct Posterior), and universal composite resin (Filtek Ultimate) specimens (n = 60 per group) were fabricated. Each group was subdivided into five subgroups (n = 12, per subgroup). The specimens were subsequently immersed in YOUPLUS, Redoxon, Sunlife Immuvit, and Sambucol effervescent vitamin solutions for 2 min per day over 30 days. Distilled water was used as control. Subsequently, surface roughness (Ra) was detected using a profilometer, and microhardness (VHN) was measured using a microhardness tester. A spectrophotometer device was used to record the L,a,b color coordinates of the specimens after 24 h, 7 days, and 30 days, and the color changes (ΔE00) of the groups were calculated. The data were analyzed by ANOVA, two-way ANOVA, Kruskal-Wallis, Levene's, and Fisher's least significant difference (LSD) tests (p < 0.05). SEM analysis was conducted on one randomly selected specimen per group (×1000).
In terms of surface roughness, material X vitamin interactions were found significant (p < 0.05). The increase in Ra from 24 h to 30 days was found significant (p < 0.05) except for Gradia Direct Anterior X Redoxon, Sunlife Immuvit and Sambucol, Filtek Ultimate X Sunlife Immuvit and Sambucol, and all control groups. Ra changes were also concluded by SEM. Regarding VHNs, material X vitamin interactions were significant (p < 0.005), except for all Filtek Ultimate subgroups. The changes in VHNs of the groups from 24 h to 30 days were significant for all enamel and Gradia Direct Anterior X YOUPLUS, Gradia Posterior X YOUPLUS, Sunlife Immuvit, and Sambucol groups (p < 0.05). In terms of ΔE00, significant differences were observed between the 7 days and 30 days in the enamel (p = 0.047), Gradia Direct Anterior (p = 0.019), and Gradia Direct Posterior groups (p = 0.038).
Daily consumption of effervescent vitamin tablets can increase surface roughness, decrease microhardness, and influence the color of human enamel and contemporary anterior, posterior, and universal composite resins after a 30-day period.