Mechanisms involved in the regulation of mitochondrial quality control by PGAM5 in heart failure

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Yanli Wang , Tiantian Ren , Cuizhi Li , Qiaomin Wu, Jinfeng Liu, Xuanke Guan, Xing Chang, Zhiming Liu, Ruxiu Liu
{"title":"Mechanisms involved in the regulation of mitochondrial quality control by PGAM5 in heart failure","authors":"Yanli Wang ,&nbsp;Tiantian Ren ,&nbsp;Cuizhi Li ,&nbsp;Qiaomin Wu,&nbsp;Jinfeng Liu,&nbsp;Xuanke Guan,&nbsp;Xing Chang,&nbsp;Zhiming Liu,&nbsp;Ruxiu Liu","doi":"10.1016/j.cstres.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Heart failure (HF) refers to a group of clinical syndromes in which various heart diseases lead to the inability of cardiac output to meet the metabolic needs of the body’s tissues. Cardiac metabolism requires enormous amounts of energy; thus, impaired myocardial energy metabolism is considered a key factor in the occurrence and development of HF. Mitochondria serve as the primary energy source for cardiomyocytes, and their regular functionality underpins healthy cardiac function. The mitochondrial quality control system is a crucial mechanism for regulating the functionality of cardiomyocytes, and any abnormality in this system can potentially impact the morphology and structure of mitochondria, as well as the energy metabolism of cardiomyocytes. Phosphoglycerate mutase 5 (PGAM5), a multifunctional protein, plays a key role in the regulation of mitochondrial quality control through multiple pathways. Therefore, abnormal PGAM5 function is closely related to mitochondrial damage. This article reviews the mechanism of PGAM5′s involvement in the regulation of the mitochondrial quality control system in the occurrence and development of HF, thereby providing a theoretical basis for future in-depth research.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 510-518"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000762/pdfft?md5=aadafd8230818ef5065e9efa8c5b8594&pid=1-s2.0-S1355814524000762-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814524000762","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heart failure (HF) refers to a group of clinical syndromes in which various heart diseases lead to the inability of cardiac output to meet the metabolic needs of the body’s tissues. Cardiac metabolism requires enormous amounts of energy; thus, impaired myocardial energy metabolism is considered a key factor in the occurrence and development of HF. Mitochondria serve as the primary energy source for cardiomyocytes, and their regular functionality underpins healthy cardiac function. The mitochondrial quality control system is a crucial mechanism for regulating the functionality of cardiomyocytes, and any abnormality in this system can potentially impact the morphology and structure of mitochondria, as well as the energy metabolism of cardiomyocytes. Phosphoglycerate mutase 5 (PGAM5), a multifunctional protein, plays a key role in the regulation of mitochondrial quality control through multiple pathways. Therefore, abnormal PGAM5 function is closely related to mitochondrial damage. This article reviews the mechanism of PGAM5′s involvement in the regulation of the mitochondrial quality control system in the occurrence and development of HF, thereby providing a theoretical basis for future in-depth research.

Abstract Image

心力衰竭中 PGAM5 对线粒体质量控制的调节机制。
心力衰竭是指各种心脏疾病导致心脏输出量无法满足机体组织代谢需要的一组临床综合征。心脏代谢需要大量能量,因此,心肌能量代谢受损被认为是心衰发生和发展的关键因素。线粒体是心肌细胞的主要能量来源,其正常功能是健康心脏功能的基础。线粒体质量控制系统是调节心肌细胞功能的重要机制,该系统的任何异常都可能影响线粒体的形态和结构以及心肌细胞的能量代谢。PGAM5 是一种多功能蛋白,在通过多种途径调控线粒体质量控制方面发挥着关键作用。因此,PGAM5 功能异常与线粒体损伤密切相关。本文综述了PGAM5参与线粒体质控系统调控心衰发生和发展的机制,从而为今后的深入研究提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Stress & Chaperones
Cell Stress & Chaperones 生物-细胞生物学
CiteScore
7.60
自引率
2.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信