A MODERN TRAVELING WAVE SOLUTION FOR CAPUTO-FRACTIONAL KLEIN–GORDON EQUATIONS

Fractals Pub Date : 2024-05-29 DOI:10.1142/s0218348x24500841
AHMAD EL-AJOU, RANIA SAADEH, ALIAA BURQAN, MAHMOUD ABDEL-ATY
{"title":"A MODERN TRAVELING WAVE SOLUTION FOR CAPUTO-FRACTIONAL KLEIN–GORDON EQUATIONS","authors":"AHMAD EL-AJOU, RANIA SAADEH, ALIAA BURQAN, MAHMOUD ABDEL-ATY","doi":"10.1142/s0218348x24500841","DOIUrl":null,"url":null,"abstract":"<p>This research paper introduces a novel approach to deriving traveling wave solutions (TWSs) for the Caputo-fractional Klein–Gordon equations. This research presents a distinct methodological advancement by introducing TWSs of a particular time-fractional partial differential equation, utilizing a non-local fractional operator, specifically the Caputo derivative. To achieve our goal, a novel transformation is considered, that converts a time-fractional partial differential equation into fractional ordinary differential equations, enabling analytical solutions through various analytical methods. This paper employs the homotopy analysis method to achieve the target objectives. To demonstrate the efficiency and applicability of the proposed transform and method, two examples are discussed and analyzed in figures.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper introduces a novel approach to deriving traveling wave solutions (TWSs) for the Caputo-fractional Klein–Gordon equations. This research presents a distinct methodological advancement by introducing TWSs of a particular time-fractional partial differential equation, utilizing a non-local fractional operator, specifically the Caputo derivative. To achieve our goal, a novel transformation is considered, that converts a time-fractional partial differential equation into fractional ordinary differential equations, enabling analytical solutions through various analytical methods. This paper employs the homotopy analysis method to achieve the target objectives. To demonstrate the efficiency and applicability of the proposed transform and method, two examples are discussed and analyzed in figures.

卡普托-分数克莱因-戈登方程的现代行波解法
本研究论文介绍了一种推导卡普托分数克莱因-戈登方程行波解(TWS)的新方法。这项研究利用非局部分数算子,特别是卡普托导数,引入了特定时分数偏微分方程的行波解,在方法论上取得了显著进步。为了实现我们的目标,我们考虑了一种新颖的转换,它将时分数偏微分方程转换为分数常微分方程,从而通过各种分析方法实现分析求解。本文采用同调分析方法来实现目标。为了证明所提出的变换和方法的效率和适用性,本文通过两个例子进行了讨论和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信