Solving PDEs with Incomplete Information

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Peter Binev, Andrea Bonito, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guergana Petrova
{"title":"Solving PDEs with Incomplete Information","authors":"Peter Binev, Andrea Bonito, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guergana Petrova","doi":"10.1137/23m1546671","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1278-1312, June 2024. <br/> Abstract. We consider the problem of numerically approximating the solutions to a partial differential equation (PDE) when there is insufficient information to determine a unique solution. Our main example is the Poisson boundary value problem, when the boundary data is unknown and instead one observes finitely many linear measurements of the solution. We view this setting as an optimal recovery problem and develop theory and numerical algorithms for its solution. The main vehicle employed is the derivation and approximation of the Riesz representers of these functionals with respect to relevant Hilbert spaces of harmonic functions.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"24 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1546671","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1278-1312, June 2024.
Abstract. We consider the problem of numerically approximating the solutions to a partial differential equation (PDE) when there is insufficient information to determine a unique solution. Our main example is the Poisson boundary value problem, when the boundary data is unknown and instead one observes finitely many linear measurements of the solution. We view this setting as an optimal recovery problem and develop theory and numerical algorithms for its solution. The main vehicle employed is the derivation and approximation of the Riesz representers of these functionals with respect to relevant Hilbert spaces of harmonic functions.
用不完全信息求解 PDEs
SIAM 数值分析期刊》第 62 卷第 3 期第 1278-1312 页,2024 年 6 月。 摘要。我们考虑了在没有足够信息确定唯一解的情况下数值逼近偏微分方程 (PDE) 解的问题。我们的主要例子是泊松边界值问题,当边界数据未知时,我们只能观察解的有限多个线性测量值。我们将这种情况视为最优恢复问题,并为其求解开发了理论和数值算法。我们采用的主要工具是推导和近似这些函数的里厄斯表示数,并将其与谐函数的相关希尔伯特空间联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信