Dynamic temporal neural patterns based on multichannel LFPs Identify different brain states during anesthesia in pigeons: comparison of three anesthetics.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mengmeng Li, Lifang Yang, Yuhuai Liu, Zhigang Shang, Hong Wan
{"title":"Dynamic temporal neural patterns based on multichannel LFPs Identify different brain states during anesthesia in pigeons: comparison of three anesthetics.","authors":"Mengmeng Li, Lifang Yang, Yuhuai Liu, Zhigang Shang, Hong Wan","doi":"10.1007/s11517-024-03132-w","DOIUrl":null,"url":null,"abstract":"<p><p>Anesthetic-induced brain activity study is crucial in avian cognitive-, consciousness-, and sleep-related research. However, the neurobiological mechanisms underlying the generation of brain rhythms and specific connectivity of birds during anesthesia are poorly understood. Although different kinds of anesthetics can be used to induce an anesthesia state, a comparison study of these drugs focusing on the neural pattern evolution during anesthesia is lacking. Here, we recorded local field potentials (LFPs) using a multi-channel micro-electrode array inserted into the nidopallium caudolateral (NCL) of adult pigeons (Columba livia) anesthetized with chloral hydrate, pelltobarbitalum natricum or urethane. Power spectral density (PSD) and functional connectivity analyses were used to measure the dynamic temporal neural patterns in NCL during anesthesia. Neural decoding analysis was adopted to calculate the probability of the pigeon's brain state and the kind of injected anesthetic. In the NCL during anesthesia, we found elevated power activity and functional connectivity at low-frequency bands and depressed power activity and connectivity at high-frequency bands. Decoding results based on the spectral and functional connectivity features indicated that the pigeon's brain states during anesthesia and the injected anesthetics can be effectively decoded. These findings provide an important foundation for future investigations on how different anesthetics induce the generation of specific neural patterns.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03132-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Anesthetic-induced brain activity study is crucial in avian cognitive-, consciousness-, and sleep-related research. However, the neurobiological mechanisms underlying the generation of brain rhythms and specific connectivity of birds during anesthesia are poorly understood. Although different kinds of anesthetics can be used to induce an anesthesia state, a comparison study of these drugs focusing on the neural pattern evolution during anesthesia is lacking. Here, we recorded local field potentials (LFPs) using a multi-channel micro-electrode array inserted into the nidopallium caudolateral (NCL) of adult pigeons (Columba livia) anesthetized with chloral hydrate, pelltobarbitalum natricum or urethane. Power spectral density (PSD) and functional connectivity analyses were used to measure the dynamic temporal neural patterns in NCL during anesthesia. Neural decoding analysis was adopted to calculate the probability of the pigeon's brain state and the kind of injected anesthetic. In the NCL during anesthesia, we found elevated power activity and functional connectivity at low-frequency bands and depressed power activity and connectivity at high-frequency bands. Decoding results based on the spectral and functional connectivity features indicated that the pigeon's brain states during anesthesia and the injected anesthetics can be effectively decoded. These findings provide an important foundation for future investigations on how different anesthetics induce the generation of specific neural patterns.

Abstract Image

基于多通道 LFP 的动态时间神经模式识别鸽子麻醉期间的不同大脑状态:三种麻醉剂的比较。
麻醉诱导的大脑活动研究对鸟类的认知、意识和睡眠相关研究至关重要。然而,人们对麻醉期间鸟类大脑节律的产生和特定连接的神经生物学机制知之甚少。虽然可以使用不同种类的麻醉剂来诱导麻醉状态,但缺乏对这些药物在麻醉过程中的神经模式演变的比较研究。在此,我们使用多通道微电极阵列记录了成年鸽子(Columba livia)的局部场电位(LFPs)。功率谱密度(PSD)和功能连接分析用于测量麻醉期间NCL的动态时间神经模式。神经解码分析用于计算鸽子大脑状态和注射麻醉剂种类的概率。在麻醉期间的NCL中,我们发现低频段的功率活动和功能连接性升高,而高频段的功率活动和连接性降低。基于频谱和功能连接特征的解码结果表明,鸽子在麻醉和注射麻醉剂期间的大脑状态可以被有效解码。这些发现为今后研究不同麻醉剂如何诱导特定神经模式的产生奠定了重要基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信