Toward greater realism in inclusive fitness models: the case of caste fate conflict in insect societies.

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY
Evolution Letters Pub Date : 2024-01-11 eCollection Date: 2024-06-01 DOI:10.1093/evlett/qrad068
Helena Mendes Ferreira, Denise Araujo Alves, Lloyd Cool, Cintia Akemi Oi, Ricardo Caliari Oliveira, Tom Wenseleers
{"title":"Toward greater realism in inclusive fitness models: the case of caste fate conflict in insect societies.","authors":"Helena Mendes Ferreira, Denise Araujo Alves, Lloyd Cool, Cintia Akemi Oi, Ricardo Caliari Oliveira, Tom Wenseleers","doi":"10.1093/evlett/qrad068","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of social evolution, inclusive fitness theory has been successful in making a wide range of qualitative predictions on expected patterns of cooperation and conflict. Nevertheless, outside of sex ratio theory, inclusive fitness models that make accurate quantitative predictions remain relatively rare. Past models dealing with caste fate conflict in insect societies, for example, successfully predicted that if female larvae can control their own caste fate, an excess should opt to selfishly develop as queens. Available models, however, were unable to accurately predict levels of queen production observed in <i>Melipona</i> bees-a genus of stingless bees where caste is self-determined-as empirically observed levels of queen production are approximately two times lower than the theoretically predicted ones. Here, we show that this discrepancy can be resolved by explicitly deriving the colony-level cost of queen overproduction from a dynamic model of colony growth, requiring the incorporation of parameters of colony growth and demography, such as the per-capita rate at which new brood cells are built and provisioned, the percentage of the queen's eggs that are female, costs linked with worker reproduction and worker mortality. Our revised model predicts queen overproduction to more severely impact colony productivity, resulting in an evolutionarily stable strategy that is approximately half that of the original model, and is shown to accurately predict actual levels of queen overproduction observed in different <i>Melipona</i> species. Altogether, this shows how inclusive fitness models can provide accurate quantitative predictions, provided that costs and benefits are modeled in sufficient detail and are measured precisely.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"8 3","pages":"387-396"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134464/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrad068","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of social evolution, inclusive fitness theory has been successful in making a wide range of qualitative predictions on expected patterns of cooperation and conflict. Nevertheless, outside of sex ratio theory, inclusive fitness models that make accurate quantitative predictions remain relatively rare. Past models dealing with caste fate conflict in insect societies, for example, successfully predicted that if female larvae can control their own caste fate, an excess should opt to selfishly develop as queens. Available models, however, were unable to accurately predict levels of queen production observed in Melipona bees-a genus of stingless bees where caste is self-determined-as empirically observed levels of queen production are approximately two times lower than the theoretically predicted ones. Here, we show that this discrepancy can be resolved by explicitly deriving the colony-level cost of queen overproduction from a dynamic model of colony growth, requiring the incorporation of parameters of colony growth and demography, such as the per-capita rate at which new brood cells are built and provisioned, the percentage of the queen's eggs that are female, costs linked with worker reproduction and worker mortality. Our revised model predicts queen overproduction to more severely impact colony productivity, resulting in an evolutionarily stable strategy that is approximately half that of the original model, and is shown to accurately predict actual levels of queen overproduction observed in different Melipona species. Altogether, this shows how inclusive fitness models can provide accurate quantitative predictions, provided that costs and benefits are modeled in sufficient detail and are measured precisely.

提高包容性适应模型的现实性:昆虫社会中种姓命运冲突的案例。
在社会进化领域,包容性适宜性理论成功地对预期的合作与冲突模式做出了广泛的定性预测。然而,在性别比理论之外,能做出准确定量预测的包容性适宜性模型仍然相对罕见。例如,过去处理昆虫社会中种姓命运冲突的模型成功地预测,如果雌性幼虫能控制自己的种姓命运,那么过多的幼虫应该选择自私地发育成皇后。然而,现有模型无法准确预测在无刺蜂属 Melipona 中观察到的蜂王生产水平--在无刺蜂属中,种姓是自我决定的--因为经验观察到的蜂王生产水平比理论预测水平低约两倍。在这里,我们展示了这一差异可以通过从蜂群生长动态模型中明确推导出蜂王过度生产的蜂群水平成本来解决,这需要纳入蜂群生长和人口统计参数,如新育雏室的人均建造和供应率、蜂王卵中雌性卵的百分比、与工蜂繁殖和工蜂死亡率相关的成本。我们修订后的模型预测,蜂王过度生产会更严重地影响蜂群的生产力,从而产生一种进化稳定的策略,该策略约为原始模型的一半,而且该模型还能准确预测在不同Melipona物种中观察到的蜂王过度生产的实际水平。总之,这表明只要成本和收益模型足够详细,并能精确测量,包容性适配模型就能提供准确的定量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信